
SSA-based Program Analysis

2/20/12 Detecting equality of variables in programs

1/2dl.acm.org/citation.cfm?doid=73560.73561

University Of Rochester

SIGN IN

Detecting equality of variables in programs
Full Text: Pdf

Authors: B. Alpern IBM Thomas J. Watson Research Center, Yorktown Heights,
NY

M. N. WegmanIBM Thomas J. Watson Research Center, Yorktown Heights,
NY

F. K. Zadeck Department of Computer Science, Brown University,
Providence, RI

Published in:
! Proceeding
POPL '88 Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages
ACM New York, NY, USA ©1988
table of contents ISBN:0-89791-252-7 doi>10.1145/73560.73561

 1988 Article

 Bibliometrics
! Downloads (6 Weeks): 66
! Downloads (12 Months): 181
! Citation Count: 104

Tools and Resources

Request Permissions

TOC Service:
Email RSS

Save to Binder

Export Formats:

BibTeX EndNote ACM Ref

Upcoming Conference:

POPL '13

Share:

Tags: algorithms
computability theory
computations on discrete
structures more tags

 Feedback | Switch to single page view (no tabs)

Abstract Authors References Cited By Index Terms Publication Reviews Comments Table of Contents

Publication years 1982-2008

Publication count 38

Citation Count 519

Available for download 15

Downloads (6 Weeks) 120

Downloads (12 Months) 794

Publication years 1975-2009

Publication count 36

Citation Count 1,483

Available for download 21

Downloads (6 Weeks) 378

Downloads (12 Months) 3,567

 B. Alpern

No contact information
provided yet.

Bibliometrics: publication history

View colleagues of B. Alpern

 M. N. Wegman

 homepage

Bibliometrics: publication history

View colleagues of M. N. Wegman

Bibliometrics: publication history

1.

2.

3.

4.

5.

Uses of this algorithm include:

Register Allocation: There is no need to load a value if
a register already contains ,a value which can be shown
to be equal.

Common Sub-Expression Elimination: There is no
need to recalculate a value if it has already been cal-
culated. If an expression is calculated at a node u and
later at a node v, if u dominates v, and if we can show
that the variables are congruent at v, then the calcu-
lation at v need not be performed.
Movement of Invariant Code: Detection whether or
not an expression will calculate the same value in a
different location is a key concern.
Branch Elimination: If a value is guaranteed to be
equal to another value, equality tests can be elimi-
nated. This condition can be expected in code in which
procedures have bleen integrated.

Branch Fusion and Loop Jamming: If there are two
if-then-else statements one right after the other,
and their predicates result in equal values, then the
code on each branch of the second statement can be
moved into the appropriate branch of the first and the
second test can bte eliminated. Similarly, if two loops
have predicates we find equivalent, then the loops are
executed the sam.e number of times; if there are no
dependencies, then the loops can be combined. Both
of these program transformations may make further
analysis easier and allow other optimizations to take
place.
Section 2 presents the basic algorithm and shows how

to use it when programs are viewed as flow graphs. Sec-
tion 3 shows how to use program structure to discover ad-
ditional equivalences. lSection 4 presents more two general-
izations of the basic algorithm which can be used to detect
more equalities. We conclude in, Section 5.

2 Equivalence of Variables in
Simple Pr,ograms

Here we introduce the basic maclhinery used to detect equiv-
alences. This will be the basis of more sophisticated algo-
rithms in Sections 3 and 4. First we need to define further
what it means for variables to be equivalent. Consider the
following program text:

if Q
then do

It5
Jt5

end
else do

It6
J- + 7

end

Are variables I and J equivalent? At the end of the
if-then-else there are two pos,sible answers; when viewed
dynamically, the answer dependls on the value of Q; when

2

viewed statically, the answer must be no since we wish our
algorithm to be conservative. However, at the end of the
then block, the answer is yes even viewed statically.

We introduce the notion of congruence which is one
of the two conditions that we need to detect equivalence.
Congruence is a relationship between two variables with-
out respect to location in the program. To make it possible
to detect such equivalences at difFerenct points in the pro-
gram, we introduce several new variables for each variable
in the original program. Thus, in the above example, we
will break I into three distinct variables: one in the then
clause, one in the else clause, and the third at the end of
the if-then-else. (This will be explained more fully in
Section 2.2.) The I in the then clause will be congruent to
the J in the then clause.

Even in the then clause, it is not clear what it means
to say that I and J are equivalent. I equals J only after the
assignment to J. We can assert that two variables are equiv-
alent at a point p only if we know the assignments to both
variables will have been executed whenever control reaches
p. We can determine statically that the assignments have
been executed if both assignments dominate p. A node a in
a rooted, directed graph is said to dominate b if all paths
from the root to b go through a. We will introduce auxil-
iary assignments (and auxiliary variables) so that each use
ofa variable is dominated by an assignment to the variable.

1.

2.

3.

4.

The algorithm can be broken into four steps:

Build a control flow graph that represents the program.

Replace each variable (both scaler and arrays) in the
original program with several new variables. These
new variables have the property that there is only one
assignment to them in the program. This form is called
static single assignment form, or SSA form.
Build an auxiliary structure called the value graph that
represents the symbolic execution of the program. La-
bel each of the assignments in the SSA program with a
node in the value graph. (In Section 3 we will modify
the value graph so that we can discover a larger set
of congruences which are dependent on control struc-
ture.)
Determine congruence of nodes in the value structure.
Two variables will be equivalent at a point p if their
assignments dominate p and are labeled by congruent
nodes. (In Section 4 we will modify the algorithm to
detect further congruences.)

The example in Figure 1 will be used throughout this
section.

2.1 Building the Control Flow Graph
We. construct a control flow graph for the program and each
node corresponds to a basic block in the program. Each
edge in the control flow graph corresponds to a branch in
the program. There may be multiple edges into a node.
Such nodes are called join points and we assume the in-
coming edges are ordered. Such a construction is fairly
standard in the study of compilers; see Allen [Al1701 for
details.

K
This

Detecting Equality of Variables in Programs

Bowen Alpern
Mark N. Wegman

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

F. Kenneth Zadeck
Department of Computer Science

Brown University
Providence, RI 02912

Introduction
paper presents an algorithm for detecting when two

computations produce equivalent values. The equivalence
of programs, and hence the equivalence of values, is in gen-
eral undecidable. Thus, the best one can hope to do is to
give an efficient algorithm that detects a large subclass of
all the possible equivalences in a program.

Two variables are said to be equivalent at a point p if
those variables contain the same values whenever control
reaches p during any possible execution of the program.
We will not examine all possible executions of the program.
Instead, we will develop a static property called congruence.
Congruence implies, but is not implied by, equivalence. Our
approach is conservative in that any variables detected to be
e:quivalent will in fact be equivalent, but not all equivalences
are detected.

Previous work has shown how to apply a technique
c.alled value numbering in basic blocks [CS70]. Value num-
bering is essentially symbolic execution on straight-line pro-
grams (basic blocks). Symbolic execution implies that two
expressions are assumed to be equal only when they consist
of the same functions and the corresponding arguments of
these functions are equal. An expression DAG is associated
with each assignment statement. A hashing algorithm as-
signs a unique integer, the value number, to each different
expression tree. Two variables that are assigned the same
integer are guaranteed to be equivalent. After the code

BcA+3
C+-B*5
D+-(A+3)*5

the value number of C and D is the hash value of “(A+3)*5”.
Because calculation is done only symbolically;nothing

can be said about variables with different value numbers.
If the assignment to D had read

D +(A*5)+ 15

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

@ 1988 ACM-O-89791-252-7/88/0001/0601 $1.50

no value numbering algorithm would recognize that C and
D are the same, since value numbering is based on symbolic
computation. It is easy to generalize value numbering to
extended basic blocks.

Reif and Lewis [RL77] h ave given a complex and ef-
ficient algorithm for detecting a somewhat more general
form than extended basic blocks, but their algorithm can-
not detect that in the following sequence J and K must be
equal:

if P then J t 5. else J + 6
if P then K t 5 else K + 6
One contribution of this paper is to give an efficient

algorithm for detecting equality in the presence of control
structures, including if -then-else and loops. Instead of
associating an expression DAG with every assignment, we
associate nodes in a directed, cyclic value graph. Because
cycles may be present, it is not clear how to represent values
so that they may tested easily for equality. We therefore
define the notion of congruence for nodes of the value graph.
Determining which nodes are congruent is a partitioning
problem an so is essentially the same problem as minimizing
a finite-state machine, which Hopcroft [Hop711 has shown
can be computed in O(E log E).

Intuitively, our algorithm will make a list of sets of
variables it has discovered to be equivalent. Such a list is a
fixed point if the variables associated with two expressions
are in the same set when they have the same functions and
when the list contains the information that their subexpres-
sions are equal. When the program has loops, there can be
a chicken-and-egg problem: if the results of two expressions
are later used in the computations determining the value
of their sub-expressions, it is not immediately clear how
equality should be determined.

As with other flow analysis algorithms, we will find a
maximal fixed point [Weg75] [GW76]. The maximal fixed
point is a fixed point that contains the most equal values.
The algorithms presented here are optimistic: they proceed
by initially assuming that all values are equal and then
separate them into more and more sets of possibly equal
variables.

Another advantage of our algorithm is that it can be
easily extended to exploit additional facts about program
semantics. We will give two such extensions to the algo-
rithm: others are clearly possible.

[Proceedings of the Fifteenth Annual ACM

1 SIGACT-SIGPLAN Symposium on Princi-
ples of Progremming Languages, San Diego,
California (January 1968)

Are J and K equivalent?

if (I < 29)
then do

J+-I
K+i

end
else do

Jc2
Kc2

end
if (I < 29)

then Ltl
else Lc-2

Figure 1: A Simple Example

In Figure 2, each box represents a basic block; the
edges connecting the boxes are the control flow graph edges
and the numbers to the side of the boxes are the labels for
each basic block. They can be assigned in any way that
gives a unique name to each block.

(6) L-t 1 Lt2 (6)

Figure 2: Control Flow Graph of Simple Example

2..2 Translation to Static Single
Assignment Form

The translation to static single assignment (or SSA) form
involves separating each variable V in the program into sev-
eral variables Vi, each of which has only one assignment.
When node i contains an assignment to V, we replace the
last assignment to V, at that node, by an assignment to
Vi. The uses of the variable V are replaced by the appro-
priate variable Vi, where i dominates the use. In order
to accomplish this we need to introduce additional assign-
ments at join points, so that there is always a dominating
assignment. These pseudo-assignments will be of the form

X t qb(Y, Z), which means that if control reaches this node
along the first entering edge, X is assigned the value Y, and
if along the other edge1 X is assigned the value of Z. These
pseudo-assignments allow us to always determine at value
of X, given the correct incoming edge. The SSA form for
Figure 1 is given in Figure 3.

(I> 1 ? I<29

(2)
Jl+-I J2 + 2
Kl t-1 K2 ~2 (3)

(4)

(5) Li + 1 L2 +2 (6)

Figure 3: SSA Form of Simple Example

Following Shapiro and Saint [SS70], we describe the
nodes at which 4’s must be inserted as pseudo-assignments.
A node n gets a pseudo-assignment for a variable X if and
only if there are two paths to n from distinct assignments
or pseudo-assignments for X such that n is the only node
common to the two paths. A naive algorithm which runs
in O(N2) for each variable can be constructed which marks
all nodes which can be reached from each assignment and
pseudo-assignment, stopping the marking when another as-
signment (or pseudo-assignment) is reached. The first node
which is marked by two different assignments is another
pseudo-assignment. The process is then repeated.

Better algorithms exist for determining the loca-
tions to insert the 4 functions. Rosen, Wegman and
Zadeck [RWZSS] g ive a relatively straightforward algorithm
for reducible algorithms that works in O(E log E) (where E
is the number of edges in the control flow graph) for each
variable. Reif and Tarjan [RTS2] give a complex algorithm
that works for irreducible graphs in O(EaE) (where cr is the
inverse of Ackerman’s function) bit vector operations where
the number of bits grows with the number of variables’.

For each node n which is a pseudo-assignment, we will
create a join 4 function dn. This function has as many

‘If there are more than two entering edges, the 4 will take the
appropriate number of arguments.

2Reif and Tarjan call pseudo-assignments join birthpoints.

3

arguments as there are entering edges to the node. The
value of this function is assigned to a new variable Vn, and
all uses of the original variable V that are dominated by n
are replaced by Vn. A variable Vn is present at a node a if
on all paths to a the Ilast assignment or pseudo-assignment
to V took place at n.. The itlh argument of the q5 whose
value is assigned to Vn is the variable present at the node
u where the edge (u,n> is the ith edge into to node n.

2.3 Building t:he Value Graph
We will build a value graph representing symbolic execu-
tion of the program. The value graph is a labeled, directed
graph. Figure 4 is the value graph of the simple exam-
ple. Each edge of the value graph corresponds to a connec-
tion between the use of a variable and the assignment at
which the value of that variable is generated. The gener-
ating assignment for the use of a variable is normally the
assignment to that variable. However, if this assignment
is a ttivial assignmen. (one of the form A + B), then the
generating assignment for A is the generating assignment
for B.

Jl 52 Kl KS

Figure 4: Valne Graph of Simple Example

Each node of the value graph corresponds to an indi-
vidual function in the program.. The graph has two types
of nodes, corresponding to the two types of assignments:

Executable Function For every normal assignment in
the program, there is a node labeled with the func-
tion symbol on the right-hand side of the assignrnent.
One edge leaves the node for each argument to the
function.

q5 Function For each. pseudo-assignment there is a node
labeled by the q!~ function for that join point. One edge
leaves the node for each atrgument of the 4 function
(i.e., the nodes corresponding to the assignments that
reach the join point).

The edges are ordered corresponding to the order of the
arguments Iof the function.

Figure 4 shows the value graph for our simple exam-
ple. For purposes of exposition, we have placed variable
names next to the nodes that they are associated with.
These names are not part of the graph. The empty node
in the value structure for the predicate is a consequence of
the example being incomplete. This node would normally
represent the calculation producing I.

2.4 Congruence
We will show that two variables have the same value at
a point p if the nodes in the value graph corresponding
to the assignments to these variables are congruent and
if both these assignments dominate p. Two nodes in the
value graph are said to be congruent if both of the following
conditions hold:

1. the nodes have identical function labels.

2. the corresponding destinations of the edges leaving the
nodes are congruent.

As we have defined congruence, it is a symmetric, reflexive
and transitive relation.

In the program fragment in Figure 4, the following are
congruence classes:

l (JIIKbLl)
. (JZ,KZ,LZ)
. (J3,K3)

l (L3)
Notice that L3 is in a different congruence class from J3
and Kg, since the two different join nodes have different c$
functions associated with them.

Figure 5: Control Flow Graph of Loop Example

The previous conditions are not enough to define con-
gruence because they are circular and in fact ambiguous.
The ambiguity allows multiple solutions. We desire the one
that gives the maximal number of congruences. Congru-
ence is defined as the maximal fixed point that satisfies the

4

arguments as there are entering edges to the node. The
value of this function is assigned to a new variable Vn, and
all uses of the original variable V that are dominated by n
are replaced by Vn. A variable Vn is present at a node a if
on all paths to a the Ilast assignment or pseudo-assignment
to V took place at n.. The itlh argument of the q5 whose
value is assigned to Vn is the variable present at the node
u where the edge (u,n> is the ith edge into to node n.

2.3 Building t:he Value Graph
We will build a value graph representing symbolic execu-
tion of the program. The value graph is a labeled, directed
graph. Figure 4 is the value graph of the simple exam-
ple. Each edge of the value graph corresponds to a connec-
tion between the use of a variable and the assignment at
which the value of that variable is generated. The gener-
ating assignment for the use of a variable is normally the
assignment to that variable. However, if this assignment
is a ttivial assignmen. (one of the form A + B), then the
generating assignment for A is the generating assignment
for B.

Jl 52 Kl KS

Figure 4: Valne Graph of Simple Example

Each node of the value graph corresponds to an indi-
vidual function in the program.. The graph has two types
of nodes, corresponding to the two types of assignments:

Executable Function For every normal assignment in
the program, there is a node labeled with the func-
tion symbol on the right-hand side of the assignrnent.
One edge leaves the node for each argument to the
function.

q5 Function For each. pseudo-assignment there is a node
labeled by the q!~ function for that join point. One edge
leaves the node for each atrgument of the 4 function
(i.e., the nodes corresponding to the assignments that
reach the join point).

The edges are ordered corresponding to the order of the
arguments Iof the function.

Figure 4 shows the value graph for our simple exam-
ple. For purposes of exposition, we have placed variable
names next to the nodes that they are associated with.
These names are not part of the graph. The empty node
in the value structure for the predicate is a consequence of
the example being incomplete. This node would normally
represent the calculation producing I.

2.4 Congruence
We will show that two variables have the same value at
a point p if the nodes in the value graph corresponding
to the assignments to these variables are congruent and
if both these assignments dominate p. Two nodes in the
value graph are said to be congruent if both of the following
conditions hold:

1. the nodes have identical function labels.

2. the corresponding destinations of the edges leaving the
nodes are congruent.

As we have defined congruence, it is a symmetric, reflexive
and transitive relation.

In the program fragment in Figure 4, the following are
congruence classes:

l (JIIKbLl)
. (JZ,KZ,LZ)
. (J3,K3)

l (L3)
Notice that L3 is in a different congruence class from J3
and Kg, since the two different join nodes have different c$
functions associated with them.

Figure 5: Control Flow Graph of Loop Example

The previous conditions are not enough to define con-
gruence because they are circular and in fact ambiguous.
The ambiguity allows multiple solutions. We desire the one
that gives the maximal number of congruences. Congru-
ence is defined as the maximal fixed point that satisfies the

4

Jo Ko

1 1

JI 2 ’ K 2

11 42 J K d2 K

J4 + + K +

4s 4%

Figure 6: Value Graph of Loop Example

previous two conditions. The solution is determined opti-
mistically. That is, all variables are assumed to be the same
initially and this assumption is refined until a fixed point
is reached. It is possible to compute a pessimistic solution
by assuming that the variables are different and combining
those that can be proven congruent. The fixed point found
by a pessimistic algorithm will not, in general, be maximal,
as shown by Figure 5 and 6.

While it is true that the value graphs for J and K in
Figure 6 are identical, a pessimistic algorithm cannot de-
termine that the nodes are congruent because of the cycles.
By definition, for two nodes to be congruent, the desti-
nations of all of the edges must be the same. The cycle
inhibits discovering these congruences, unless they are as-
sumed from the start.

It is not necessary to represent the congruences as pairs
since the congruence relation is transitive, reflexive and
commutative and moreover, there are O(N’) possible pairs.
R.ather, we represent them by sets of congruent nodes. The
collection of all of the sets of nodes is called a partitioning
of the nodes. Each set is called a partition.

2.5 Two Partitioning Algorithms
We begin with an initial partitioning of the nodes that puts
all possibly congruent nodes in the same partition. (Non-
congruent nodes may also start out in the same partition.)
We then create a new partitioning at each step of the al-
gorithm. Each partitioning is a refinement of the previous
one. In the final partitioning, two non-congruent nodes
must be in different partitions.

T:he following simple algorithm can be used to discover con-
gruent nodes in the value graph.

Silmple Algorithm

step 1: Place all nodes with the same label in the same
partitions.

step i+l: Two nodes will be in the same partition in par-
titioning i+l if, in partitioning i, the nodes are in the
same partition and the corresponding destinations of
their edges are in the same partitions.

5

The algorithm terminates when two successive partitioning
are identical and takes O(N’) operations.

Aho, Hopcroft, and Ullman [AHU74] give a fast
algorithm for partitioning based on an algorithm by
Hopcroft [Hop711 for minimizing a finite-state machine.
We will use the fast partitioning algorithm directly from
[AHU74]. It is shown in Figure 7 in a generalized form
similar to one they suggest. In this algorithm, the input is
an initial partitioning of the set into p equivalence cIasses,
and a collection of k functions f i from the set to itself. In-
tuitively, each function f i which maps a node u to a node
v corresponds to the edge (u,v> in the value graph.

The algorithm makes use of two arrays, F-l and B.
The elements of the ith partition are stored in B[i]. The
inverse image of element x under frz is stored in F-‘[m, x].
The final partitioning has the property that two elements,
x and y, are in the same partition only if both a) they were
originally in the same partition and b) there is no function
such that fi(x) is not in the same partition as fi(y).

WAITING + (I, 2, . . . p }
9 + Pi
while WAITING # 8 do

select and delete an integer i from WAITING;
for m from I to k do

INVERSE c 8
for x in B[i] do

INVERSE +- INVERSE UF-‘[m, x]
end
for each j such that B[j]n

B[j] e INVERSE do
q+q+i
create a new block B[d;
B[d + B[j]flIBVERSE
%I t B[jl - %I
if j is in WAITING

INVERSE # 8 and

then add q to WAITING
else if IlWl I PhIlI

then add j to WAITING
else add q to WAITING

end
end

end

Figure 7: Hopcroft’s Partitioning Algorithm

To fit congruence detection into this framework, the
nodes in the value graph are initially partitioned by their
label. The ith function maps a node to its ith child. The
final partitioning of the’algorithm leaves the nodes in the
same partition if and only if the nodes are congruent.

This partitioning algorithm is based on the following
ideas. At each step, partitions are split. A partition is not
examined unless it needs to be split. It needs to be split
if two nodes in it point to nodes in separate partitions.
Splitting works by creating a new partition. Nodes are
moved out of the original partition into the new one. This
is in such a way that the new partition has no more than
half the nodes that were in the original partition. Splitting

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(6), 701–724 (JUNE 1997)

Value Numbering

PRESTON BRIGGS
Tera Computer Company, 2815 Eastlake Avenue East, Seattle, WA 98102, U.S.A.

KEITH D. COOPER AND L. TAYLOR SIMPSON
Rice University, 6100 Main Street, Mail Stop 132, Houston, TX 77005, U.S.A.

SUMMARY

Value numbering is a compiler-based program analysis method that allows redundant computations to
be removed. This paper compares hash-based approaches derived from the classic local algorithm1 with
partitioning approaches based on the work of Alpern, Wegman and Zadeck.2 Historically, the hash-based
algorithm has been applied to single basic blocks or extended basic blocks.We have improved the technique
to operate over the routine’s dominator tree. The partitioning approach partitions the values in the routine
into congruence classes and removes computations when one congruent value dominates another. We have
extended this technique to remove computations that define a value in the set of available expressions
(AVAIL).3 Also, we are able to apply a version of Morel and Renvoise’s partial redundancy elimination4 to
remove even more redundancies.
The paper presents a series of hash-based algorithms and a series of refinements to the partitioning

technique.Within each series, it can be proved that eachmethod discovers at least as many redundancies as
its predecessors.Unfortunately, no such relationship exists between thehash-based and global techniques.On
some programs, the hash-based techniques eliminate more redundancies than the partitioning techniques,
while on others, partitioning wins. We experimentally compare the improvementsmade by these techniques
when applied to real programs. These results will be useful for commercial compiler writers who wish to
assess the potential impact of each technique before implementation.1997 by JohnWiley & Sons, Ltd.

KEYWORDS: code optimization; value numbering; redundancy elimination

INTRODUCTION

Value numbering is a compiler-based program analysis technique with a long history in both
literature and practice. Although the name was originally applied to a method for improving
single basic blocks, it is now used to describe a collection of optimizations that vary in power
and scope. The primary objective of value numbering is to assign an identifying number (a
value number) to each expression in a particular way. The number must have the property that
two expressions have the same number if the compiler can prove they are equal for all possible
program inputs. The numbers can then be used to find redundant computations and remove
them. There are two other objectives accomplished by certain forms of value numbering:

1. To recognize certain algebraic identities, like 0 and 1, and to use them
to simplify the code and to expand the set of expressions known to be equal.

2. To evaluate expressions whose operands are constants and to propagate their values
through the code.

CCC 0038–0644/97/060701–24 $17 50 Received 29 September 1995
1997 by John Wiley & Sons, Ltd. Revised 18 October 1996

1

2

Research Article

You have full text access to this content

Value Numbering
1. PRESTON BRIGGS1,*,
2. KEITH D. COOPER2,
3. L. TAYLOR SIMPSON2

Article first published online: 8 JAN 1999

DOI: 10.1002/(SICI)1097-024X(199706)27:6<701::AID-SPE104>3.0.CO;2-0

Copyright © 1997 John Wiley & Sons, Ltd.

Issue

Software: Practice and Experience
Volume 27, Issue 6, (/doi/10.1002/(SICI)1097-024X(199706)27:6<>1.0.CO;2-4/issuetoc) pages 701–724, June 1997

Additional Information

How to Cite

BRIGGS, P., COOPER, K. D. and SIMPSON, L. T. (1997), Value Numbering. Software: Practice and Experience, 27: 701–724.
doi: 10.1002/(SICI)1097-024X(199706)27:6<701::AID-SPE104>3.0.CO;2-0

Author Information

Tera Computer Company, 2815 Eastlake Avenue East, Seattle, WA 98102, U.S.A.

Rice University, 6100 Main Street, Mail Stop 132, Houston, TX 77005, U.S.A.

*Tera Computer Company, 2815 Eastlake Avenue East, Seattle, WA 98102, U.S.A.

Publication History

1. Issue published online: 8 JAN 1999
2. Article first published online: 8 JAN 1999
3. Manuscript Received: 18 OCT 1996

Funded by

DARPA. Grant Number: Army Contract DABT 63-95-C-0115

Abstract
References (references)

Preston Briggs et al, "Value Numbering", Software --
Practice and Experience, 1997.

708 P. BRIGGS, K.D. COOPER AND L.T. SIMPSON

0 0 0
0 0 0
0 0 0

1

0 0 0
0 0 0

2
1 0 0
1 0 0
1 0 0

3

2 0 1
2 0 1
2 0 1
0 2 2

3 0 0

4

0 0 0
0 0 0
0 0 0

1

0 0 0
0 0 0

2
0 0 0
0 0 0
0 0 0

3

0 0 0
2 0 0
2 0 0
0 0 2

0 0 0

4

Before After

Figure 5. Dominator-tree value-numbering example

-function for was inserted during the construction of SSA form. The second -function
combines the values 0 and 0. Since this is the first appearance of a -function with these
parameters, 2 is assigned its SSA name as its value number. The -function defining 2 is
redundant because it is equal to 2. Therefore, we eliminate this -function by assigning 2 the
value number 2 . When processing the assignments in the block, we replace each operand
by its value number. This results in the expression 0 2 in the assignment to 0. The
assignment to 3 is eliminated by giving 3 the value number 0 .
Notice that if we applied single-basic-block value numbering to this example, the only

redundancies we could remove are the assignments to 0 and 1. If we applied extended-
basic-block value numbering, we could also remove the assignments to 0, 1 and 1. Only
dominator-based value numbering can remove the assignments to 2, 2 and 3.

Incorporating value numbering into SSA construction

We have described dominator-based value numbering as it would be applied to routines
already in SSA form. However, it is possible to incorporate value numbering into the SSA
construction process. The advantage of combining the steps is to improve the performance
of the optimizer by reducing the amount of work performed and by reducing the size of the
routine’s SSA representation. The algorithm for dominator-based value numbering during
SSA construction is presented in Figure 6. There is a great deal of similarity between the value
numbering process and the renaming process during SSA construction.6 The renaming process
can be modified as follows to accomplish renaming and value numbering simultaneously:

Benefits in VN and Data flow

• Value numbering
• same name cannot have different value numbers

• substitution is guaranteed when redundancy is found
• phi function as “control flow” operation
• in DVN, there is no kill from intervening blocks

• Data flow analysis
• no kill set in data flow equations

• Problems
• copy statements inserted at deconstruction
• register allocation pass removes the copies

79

