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Uses of this algorithm include: 

Register Allocation: There is no need to load a value if 
a register already contains ,a value which can be shown 
to be equal. 

Common Sub-Expression Elimination: There is no 
need to recalculate a value if it has already been cal- 
culated. If an expression is calculated at a node u and 
later at a node v, if u dominates v, and if we can show 
that the variables are congruent at v, then the calcu- 
lation at v need not be performed. 
Movement of Invariant Code: Detection whether or 
not an expression will calculate the same value in a 
different location is a key concern. 
Branch Elimination: If a value is guaranteed to be 
equal to another value, equality tests can be elimi- 
nated. This condition can be expected in code in which 
procedures have bleen integrated. 

Branch Fusion and Loop Jamming: If there are two 
if-then-else statements one right after the other, 
and their predicates result in equal values, then the 
code on each branch of the second statement can be 
moved into the appropriate branch of the first and the 
second test can bte eliminated. Similarly, if two loops 
have predicates we find equivalent, then the loops are 
executed the sam.e number of times; if there are no 
dependencies, then the loops can be combined. Both 
of these program transformations may make further 
analysis easier and allow other optimizations to take 
place. 
Section 2 presents the basic algorithm and shows how 

to use it when programs are viewed as flow graphs. Sec- 
tion 3 shows how to use program structure to discover ad- 
ditional equivalences. lSection 4 presents more two general- 
izations of the basic algorithm which can be used to detect 
more equalities. We conclude in, Section 5. 

2 Equivalence of Variables in 
Simple Pr,ograms 

Here we introduce the basic maclhinery used to detect equiv- 
alences. This will be the basis of more sophisticated algo- 
rithms in Sections 3 and 4. First we need to define further 
what it means for variables to be equivalent. Consider the 
following program text: 

if Q 
then do 

It5 
Jt5 

end 
else do 

It6 
J- + 7 

end 

Are variables I and J equivalent? At the end of the 
if-then-else there are two pos,sible answers; when viewed 
dynamically, the answer dependls on the value of Q; when 

2 

viewed statically, the answer must be no since we wish our 
algorithm to be conservative. However, at the end of the 
then block, the answer is yes even viewed statically. 

We introduce the notion of congruence which is one 
of the two conditions that we need to detect equivalence. 
Congruence is a relationship between two variables with- 
out respect to location in the program. To make it possible 
to detect such equivalences at difFerenct points in the pro- 
gram, we introduce several new variables for each variable 
in the original program. Thus, in the above example, we 
will break I into three distinct variables: one in the then 
clause, one in the else clause, and the third at the end of 
the if-then-else. (This will be explained more fully in 
Section 2.2.) The I in the then clause will be congruent to 
the J in the then clause. 

Even in the then clause, it is not clear what it means 
to say that I and J are equivalent. I equals J only after the 
assignment to J. We can assert that two variables are equiv- 
alent at a point p only if we know the assignments to both 
variables will have been executed whenever control reaches 
p. We can determine statically that the assignments have 
been executed if both assignments dominate p. A node a in 
a rooted, directed graph is said to dominate b if all paths 
from the root to b go through a. We will introduce auxil- 
iary assignments (and auxiliary variables) so that each use 
ofa variable is dominated by an assignment to the variable. 

1. 

2. 

3. 

4. 

The algorithm can be broken into four steps: 

Build a control flow graph that represents the program. 

Replace each variable (both scaler and arrays) in the 
original program with several new variables. These 
new variables have the property that there is only one 
assignment to them in the program. This form is called 
static single assignment form, or SSA form. 
Build an auxiliary structure called the value graph that 
represents the symbolic execution of the program. La- 
bel each of the assignments in the SSA program with a 
node in the value graph. (In Section 3 we will modify 
the value graph so that we can discover a larger set 
of congruences which are dependent on control struc- 
ture.) 
Determine congruence of nodes in the value structure. 
Two variables will be equivalent at a point p if their 
assignments dominate p and are labeled by congruent 
nodes. (In Section 4 we will modify the algorithm to 
detect further congruences.) 

The example in Figure 1 will be used throughout this 
section. 

2.1 Building the Control Flow Graph 
We. construct a control flow graph for the program and each 
node corresponds to a basic block in the program. Each 
edge in the control flow graph corresponds to a branch in 
the program. There may be multiple edges into a node. 
Such nodes are called join points and we assume the in- 
coming edges are ordered. Such a construction is fairly 
standard in the study of compilers; see Allen [Al1701 for 
details. 

K 
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Introduction 
paper presents an algorithm for detecting when two 

computations produce equivalent values. The equivalence 
of programs, and hence the equivalence of values, is in gen- 
eral undecidable. Thus, the best one can hope to do is to 
give an efficient algorithm that detects a large subclass of 
all the possible equivalences in a program. 

Two variables are said to be equivalent at a point p if 
those variables contain the same values whenever control 
reaches p during any possible execution of the program. 
We will not examine all possible executions of the program. 
Instead, we will develop a static property called congruence. 
Congruence implies, but is not implied by, equivalence. Our 
approach is conservative in that any variables detected to be 
e:quivalent will in fact be equivalent, but not all equivalences 
are detected. 

Previous work has shown how to apply a technique 
c.alled value numbering in basic blocks [CS70]. Value num- 
bering is essentially symbolic execution on straight-line pro- 
grams (basic blocks). Symbolic execution implies that two 
expressions are assumed to be equal only when they consist 
of the same functions and the corresponding arguments of 
these functions are equal. An expression DAG is associated 
with each assignment statement. A hashing algorithm as- 
signs a unique integer, the value number, to each different 
expression tree. Two variables that are assigned the same 
integer are guaranteed to be equivalent. After the code 

BcA+3 
C+-B*5 
D+-(A+3)*5 

the value number of C and D is the hash value of “(A+3)*5”. 
Because calculation is done only symbolically;nothing 

can be said about variables with different value numbers. 
If the assignment to D had read 

D +(A*5)+ 15 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. TO 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 
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no value numbering algorithm would recognize that C and 
D are the same, since value numbering is based on symbolic 
computation. It is easy to generalize value numbering to 
extended basic blocks. 

Reif and Lewis [RL77] h ave given a complex and ef- 
ficient algorithm for detecting a somewhat more general 
form than extended basic blocks, but their algorithm can- 
not detect that in the following sequence J and K must be 
equal: 

if P then J t 5. else J + 6 
if P then K t 5 else K + 6 
One contribution of this paper is to give an efficient 

algorithm for detecting equality in the presence of control 
structures, including if -then-else and loops. Instead of 
associating an expression DAG with every assignment, we 
associate nodes in a directed, cyclic value graph. Because 
cycles may be present, it is not clear how to represent values 
so that they may tested easily for equality. We therefore 
define the notion of congruence for nodes of the value graph. 
Determining which nodes are congruent is a partitioning 
problem an so is essentially the same problem as minimizing 
a finite-state machine, which Hopcroft [Hop711 has shown 
can be computed in O(E log E). 

Intuitively, our algorithm will make a list of sets of 
variables it has discovered to be equivalent. Such a list is a 
fixed point if the variables associated with two expressions 
are in the same set when they have the same functions and 
when the list contains the information that their subexpres- 
sions are equal. When the program has loops, there can be 
a chicken-and-egg problem: if the results of two expressions 
are later used in the computations determining the value 
of their sub-expressions, it is not immediately clear how 
equality should be determined. 

As with other flow analysis algorithms, we will find a 
maximal fixed point [Weg75] [GW76]. The maximal fixed 
point is a fixed point that contains the most equal values. 
The algorithms presented here are optimistic: they proceed 
by initially assuming that all values are equal and then 
separate them into more and more sets of possibly equal 
variables. 

Another advantage of our algorithm is that it can be 
easily extended to exploit additional facts about program 
semantics. We will give two such extensions to the algo- 
rithm: others are clearly possible. 

[ Proceedings of the Fifteenth Annual ACM 

1 SIGACT-SIGPLAN Symposium on Princi- 
ples of Progremming Languages, San Diego, 
California (January 1968) 

Are J and K equivalent?

if (I < 29) 
then do 

J+-I 
K+i 

end 
else do 

Jc2 
Kc2 

end 
if (I < 29) 

then Ltl 
else Lc-2 

Figure 1: A Simple Example 

In Figure 2, each box represents a basic block; the 
edges connecting the boxes are the control flow graph edges 
and the numbers to the side of the boxes are the labels for 
each basic block. They can be assigned in any way that 
gives a unique name to each block. 

(6) L-t 1 Lt2 (6) 

Figure 2: Control Flow Graph of Simple Example 

2..2 Translation to Static Single 
Assignment Form 

The translation to static single assignment (or SSA) form 
involves separating each variable V in the program into sev- 
eral variables Vi, each of which has only one assignment. 
When node i contains an assignment to V, we replace the 
last assignment to V, at that node, by an assignment to 
Vi. The uses of the variable V are replaced by the appro- 
priate variable Vi, where i dominates the use. In order 
to accomplish this we need to introduce additional assign- 
ments at join points, so that there is always a dominating 
assignment. These pseudo-assignments will be of the form 

X t qb(Y, Z), which means that if control reaches this node 
along the first entering edge, X is assigned the value Y, and 
if along the other edge1 X is assigned the value of Z. These 
pseudo-assignments allow us to always determine at value 
of X, given the correct incoming edge. The SSA form for 
Figure 1 is given in Figure 3. 

(I> 1 ? I<29 

(2) 
Jl+-I J2 + 2 
Kl t-1 K2 ~2 (3) 

(4) 

(5) Li + 1 L2 +2 (6) 

Figure 3: SSA Form of Simple Example 

Following Shapiro and Saint [SS70], we describe the 
nodes at which 4’s must be inserted as pseudo-assignments. 
A node n gets a pseudo-assignment for a variable X if and 
only if there are two paths to n from distinct assignments 
or pseudo-assignments for X such that n is the only node 
common to the two paths. A naive algorithm which runs 
in O(N2) for each variable can be constructed which marks 
all nodes which can be reached from each assignment and 
pseudo-assignment, stopping the marking when another as- 
signment (or pseudo-assignment) is reached. The first node 
which is marked by two different assignments is another 
pseudo-assignment. The process is then repeated. 

Better algorithms exist for determining the loca- 
tions to insert the 4 functions. Rosen, Wegman and 
Zadeck [RWZSS] g ive a relatively straightforward algorithm 
for reducible algorithms that works in O(E log E) (where E 
is the number of edges in the control flow graph) for each 
variable. Reif and Tarjan [RTS2] give a complex algorithm 
that works for irreducible graphs in O(EaE) (where cr is the 
inverse of Ackerman’s function) bit vector operations where 
the number of bits grows with the number of variables’. 

For each node n which is a pseudo-assignment, we will 
create a join 4 function dn. This function has as many 

‘If there are more than two entering edges, the 4 will take the 
appropriate number of arguments. 

2Reif and Tarjan call pseudo-assignments join birthpoints. 
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arguments as there are entering edges to the node. The 
value of this function is assigned to a new variable Vn, and 
all uses of the original variable V that are dominated by n 
are replaced by Vn. A variable Vn is present at a node a if 
on all paths to a the Ilast assignment or pseudo-assignment 
to V took place at n.. The itlh argument of the q5 whose 
value is assigned to Vn is the variable present at the node 
u where the edge (u,n> is the ith edge into to node n. 

2.3 Building t:he Value Graph 
We will build a value graph representing symbolic execu- 
tion of the program. The value graph is a labeled, directed 
graph. Figure 4 is the value graph of the simple exam- 
ple. Each edge of the value graph corresponds to a connec- 
tion between the use of a variable and the assignment at 
which the value of that variable is generated. The gener- 
ating assignment for the use of a variable is normally the 
assignment to that variable. However, if this assignment 
is a ttivial assignmen. (one of the form A + B), then the 
generating assignment for A is the generating assignment 
for B. 

Jl 52 Kl KS 

Figure 4: Valne Graph of Simple Example 

Each node of the value graph corresponds to an indi- 
vidual function in the program.. The graph has two types 
of nodes, corresponding to the two types of assignments: 

Executable Function For every normal assignment in 
the program, there is a node labeled with the func- 
tion symbol on the right-hand side of the assignrnent. 
One edge leaves the node for each argument to the 
function. 

q5 Function For each. pseudo-assignment there is a node 
labeled by the q!~ function for that join point. One edge 
leaves the node for each atrgument of the 4 function 
(i.e., the nodes corresponding to the assignments that 
reach the join point). 

The edges are ordered corresponding to the order of the 
arguments Iof the function. 

Figure 4 shows the value graph for our simple exam- 
ple. For purposes of exposition, we have placed variable 
names next to the nodes that they are associated with. 
These names are not part of the graph. The empty node 
in the value structure for the predicate is a consequence of 
the example being incomplete. This node would normally 
represent the calculation producing I. 

2.4 Congruence 
We will show that two variables have the same value at 
a point p if the nodes in the value graph corresponding 
to the assignments to these variables are congruent and 
if both these assignments dominate p. Two nodes in the 
value graph are said to be congruent if both of the following 
conditions hold: 

1. the nodes have identical function labels. 

2. the corresponding destinations of the edges leaving the 
nodes are congruent. 

As we have defined congruence, it is a symmetric, reflexive 
and transitive relation. 

In the program fragment in Figure 4, the following are 
congruence classes: 

l (JIIKbLl) 
. (JZ,KZ,LZ) 
. (J3,K3) 

l (L3) 
Notice that L3 is in a different congruence class from J3 
and Kg, since the two different join nodes have different c$ 
functions associated with them. 

Figure 5: Control Flow Graph of Loop Example 

The previous conditions are not enough to define con- 
gruence because they are circular and in fact ambiguous. 
The ambiguity allows multiple solutions. We desire the one 
that gives the maximal number of congruences. Congru- 
ence is defined as the maximal fixed point that satisfies the 
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Figure 6: Value Graph of Loop Example 

previous two conditions. The solution is determined opti- 
mistically. That is, all variables are assumed to be the same 
initially and this assumption is refined until a fixed point 
is reached. It is possible to compute a pessimistic solution 
by assuming that the variables are different and combining 
those that can be proven congruent. The fixed point found 
by a pessimistic algorithm will not, in general, be maximal, 
as shown by Figure 5 and 6. 

While it is true that the value graphs for J and K in 
Figure 6 are identical, a pessimistic algorithm cannot de- 
termine that the nodes are congruent because of the cycles. 
By definition, for two nodes to be congruent, the desti- 
nations of all of the edges must be the same. The cycle 
inhibits discovering these congruences, unless they are as- 
sumed from the start. 

It is not necessary to represent the congruences as pairs 
since the congruence relation is transitive, reflexive and 
commutative and moreover, there are O(N’) possible pairs. 
R.ather, we represent them by sets of congruent nodes. The 
collection of all of the sets of nodes is called a partitioning 
of the nodes. Each set is called a partition. 

2.5 Two Partitioning Algorithms 
We begin with an initial partitioning of the nodes that puts 
all possibly congruent nodes in the same partition. (Non- 
congruent nodes may also start out in the same partition.) 
We then create a new partitioning at each step of the al- 
gorithm. Each partitioning is a refinement of the previous 
one. In the final partitioning, two non-congruent nodes 
must be in different partitions. 

T:he following simple algorithm can be used to discover con- 
gruent nodes in the value graph. 

Silmple Algorithm 

step 1: Place all nodes with the same label in the same 
partitions. 

step i+l: Two nodes will be in the same partition in par- 
titioning i+l if, in partitioning i, the nodes are in the 
same partition and the corresponding destinations of 
their edges are in the same partitions. 
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The algorithm terminates when two successive partitioning 
are identical and takes O(N’) operations. 

Aho, Hopcroft, and Ullman [AHU74] give a fast 
algorithm for partitioning based on an algorithm by 
Hopcroft [Hop711 for minimizing a finite-state machine. 
We will use the fast partitioning algorithm directly from 
[AHU74]. It is shown in Figure 7 in a generalized form 
similar to one they suggest. In this algorithm, the input is 
an initial partitioning of the set into p equivalence cIasses, 
and a collection of k functions f i from the set to itself. In- 
tuitively, each function f i which maps a node u to a node 
v corresponds to the edge (u,v> in the value graph. 

The algorithm makes use of two arrays, F-l and B. 
The elements of the ith partition are stored in B[i]. The 
inverse image of element x under frz is stored in F-‘[m, x]. 
The final partitioning has the property that two elements, 
x and y, are in the same partition only if both a) they were 
originally in the same partition and b) there is no function 
such that fi(x) is not in the same partition as fi(y). 

WAITING + ( I, 2, . . . p } 
9 + Pi 
while WAITING # 8 do 

select and delete an integer i from WAITING; 
for m from I to k do 

INVERSE c 8 
for x in B[i] do 

INVERSE +- INVERSE UF-‘[m, x] 
end 
for each j such that B[j]n 

B[j] e INVERSE do 
q+q+i 
create a new block B[d; 
B[d + B[j]flIBVERSE 
%I t B[jl - %I 
if j is in WAITING 

INVERSE # 8 and 

then add q to WAITING 
else if IlWl I PhIlI 

then add j to WAITING 
else add q to WAITING 

end 
end 

end 

Figure 7: Hopcroft’s Partitioning Algorithm 

To fit congruence detection into this framework, the 
nodes in the value graph are initially partitioned by their 
label. The ith function maps a node to its ith child. The 
final partitioning of the’algorithm leaves the nodes in the 
same partition if and only if the nodes are congruent. 

This partitioning algorithm is based on the following 
ideas. At each step, partitions are split. A partition is not 
examined unless it needs to be split. It needs to be split 
if two nodes in it point to nodes in separate partitions. 
Splitting works by creating a new partition. Nodes are 
moved out of the original partition into the new one. This 
is in such a way that the new partition has no more than 
half the nodes that were in the original partition. Splitting 
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Value Numbering
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KEITH D. COOPER AND L. TAYLOR SIMPSON
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SUMMARY

Value numbering is a compiler-based program analysis method that allows redundant computations to
be removed. This paper compares hash-based approaches derived from the classic local algorithm1 with
partitioning approaches based on the work of Alpern, Wegman and Zadeck.2 Historically, the hash-based
algorithm has been applied to single basic blocks or extended basic blocks.We have improved the technique
to operate over the routine’s dominator tree. The partitioning approach partitions the values in the routine
into congruence classes and removes computations when one congruent value dominates another. We have
extended this technique to remove computations that define a value in the set of available expressions
(AVAIL).3 Also, we are able to apply a version of Morel and Renvoise’s partial redundancy elimination4 to
remove even more redundancies.
The paper presents a series of hash-based algorithms and a series of refinements to the partitioning

technique.Within each series, it can be proved that eachmethod discovers at least as many redundancies as
its predecessors.Unfortunately, no such relationship exists between thehash-based and global techniques.On
some programs, the hash-based techniques eliminate more redundancies than the partitioning techniques,
while on others, partitioning wins. We experimentally compare the improvementsmade by these techniques
when applied to real programs. These results will be useful for commercial compiler writers who wish to
assess the potential impact of each technique before implementation.1997 by JohnWiley & Sons, Ltd.

KEYWORDS: code optimization; value numbering; redundancy elimination

INTRODUCTION

Value numbering is a compiler-based program analysis technique with a long history in both
literature and practice. Although the name was originally applied to a method for improving
single basic blocks, it is now used to describe a collection of optimizations that vary in power
and scope. The primary objective of value numbering is to assign an identifying number (a
value number) to each expression in a particular way. The number must have the property that
two expressions have the same number if the compiler can prove they are equal for all possible
program inputs. The numbers can then be used to find redundant computations and remove
them. There are two other objectives accomplished by certain forms of value numbering:

1. To recognize certain algebraic identities, like 0 and 1, and to use them
to simplify the code and to expand the set of expressions known to be equal.

2. To evaluate expressions whose operands are constants and to propagate their values
through the code.
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Figure 5. Dominator-tree value-numbering example

-function for was inserted during the construction of SSA form. The second -function
combines the values 0 and 0. Since this is the first appearance of a -function with these
parameters, 2 is assigned its SSA name as its value number. The -function defining 2 is
redundant because it is equal to 2. Therefore, we eliminate this -function by assigning 2 the
value number 2 . When processing the assignments in the block, we replace each operand
by its value number. This results in the expression 0 2 in the assignment to 0. The
assignment to 3 is eliminated by giving 3 the value number 0 .
Notice that if we applied single-basic-block value numbering to this example, the only

redundancies we could remove are the assignments to 0 and 1. If we applied extended-
basic-block value numbering, we could also remove the assignments to 0, 1 and 1. Only
dominator-based value numbering can remove the assignments to 2, 2 and 3.

Incorporating value numbering into SSA construction

We have described dominator-based value numbering as it would be applied to routines
already in SSA form. However, it is possible to incorporate value numbering into the SSA
construction process. The advantage of combining the steps is to improve the performance
of the optimizer by reducing the amount of work performed and by reducing the size of the
routine’s SSA representation. The algorithm for dominator-based value numbering during
SSA construction is presented in Figure 6. There is a great deal of similarity between the value
numbering process and the renaming process during SSA construction.6 The renaming process
can be modified as follows to accomplish renaming and value numbering simultaneously:

Benefits in VN and Data flow

• Value numbering
• same name cannot have different value numbers

• substitution is guaranteed when redundancy is found
• phi function as “control flow” operation
• in DVN, there is no kill from intervening blocks

• Data flow analysis
• no kill set in data flow equations

• Problems
• copy statements inserted at deconstruction
• register allocation pass removes the copies
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