
CSC 255/455
Software Analysis and Improvement

Instruction Scheduling, Register
Allocation, Partial Redundancy Removal

Instructor: Chen Ding

Local Instruction Scheduling
— A Primer for Lab 3 —

Comp 412

Copyright 2008, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412

FALL 2008

Comp 412, Fall 2008 1

What Makes Code Run Fast?

•! Many operations have non-zero latencies

•! Modern machines can issue several operations per cycle

•! Execution time is order-dependent (and has been since the 60’s)

Assumed latencies (conservative)

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

•! Loads & stores may or may not block

>! Non-blocking !fill those issue slots

•! Branch costs vary with path taken

•! Branches typically have delay slots
>! Fill slots with unrelated operations
>! Percolates branch upward

•! Scheduler should hide the latencies

Lab 3 will build a local scheduler

Comp 412, Fall 2008 2

Example

w " w * 2 * x * y * z

1 loadAI r0,@w ! r1

4 add r1,r1 ! r1

5 loadAI r0,@x ! r2

8 mult r1,r2 ! r1

9 loadAI r0,@y ! r2

12 mult r1,r2 ! r1

13 loadAI r0,@z ! r2

16 mult r1,r2 ! r1

 18 storeAI r1 ! r0,@w

21 r1 is free

1 loadAI r0,@w ! r1

2 loadAI r0,@x ! r2

3 loadAI r0,@y ! r3

4 add r1,r1 ! r1

5 mult r1,r2 ! r1

6 loadAI r0,@z ! r2

7 mult r1,r3 ! r1

9 mult r1,r2 ! r1

11 storeAI r1 ! r0,@w

14 r1 is free

Simple schedule Schedule loads early

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called instruction scheduling

Comp 412, Fall 2008 3

Instruction Scheduling (Engineer’s View)

The Problem

Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

Scheduler
slow

code

fast

code

Machine description

The Task

•! Produce correct code

•! Minimize wasted cycles

•! Avoid spilling registers

•! Operate efficiently

Comp 412, Fall 2008 4

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a precedence graph G

•! Nodes n ! G are operations with type(n) and delay(n)

•! An edge e = (n1,n2) ! G if & only if n2 uses the result of n1

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code

a

b c

d e

f
g

h

i

The Precedence Graph

Comp 412, Fall 2008 5

Instruction Scheduling (Definitions)

A correct schedule S maps each n! N into a non-negative integer
representing its cycle number, and

 1. S(n) ! 0, for all n ! N, obviously
2. If (n1,n2) ! E, S(n1) + delay(n1) ! S(n2)
3. For each type t, there are no more operations of type t in any cycle

than the target machine can issue

The length of a schedule S, denoted L(S), is
 L(S) = maxn ! N (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
S is time-optimal if L(S) ! L(S1), for all other schedules S1
A schedule might also be optimal in terms of registers, power, or

space….

Comp 412, Fall 2008 6

Instruction Scheduling (What’s so difficult?)

Critical Points

•! All operands must be available

•! Multiple operations can be ready

•! Moving operations can lengthen register lifetimes

•! Placing uses near definitions can shorten register lifetimes

•! Operands can have multiple predecessors

Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case

•! Restricted to straight-line code

•! Consistent and predictable latencies

Comp 412, Fall 2008 7

Instruction Scheduling: The Big Picture

1. Build a precedence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, one cycle at a

time
a. Use a queue of operations that are ready
b. At each cycle

 I. Choose the highest priority ready operation and schedule
it

II. Update the ready queue

Local list scheduling
•! The dominant algorithm for twenty years
•! A greedy, heuristic, local technique

Comp 412, Fall 2008 8

Local List Scheduling

Cycle " 1
Ready " leaves of P
Active " Ø

while (Ready # Active $ Ø)
 if (Ready $ Ø) then
 remove an op from Ready
 S(op) " Cycle
 Active ¬ Active # op

 Cycle " Cycle + 1

 for each op % Active
 if (S(op) + delay(op) ! Cycle) then
 remove op from Active
 for each successor s of op in P
 if (s is ready) then
 Ready " Ready # s

Removal in priority order

op has completed execution

If successor’s operands are
ready, put it on Ready

Comp 412, Fall 2008 9

Scheduling Example

1.! Build the precedence graph

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code

a

b c

d e

f
g

h

i

The Precedence Graph

Comp 412, Fall 2008 10

Scheduling Example

1.! Build the precedence graph

2.!Determine priorities: longest latency-weighted path

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code

a

b c

d e

f
g

h

i

The Precedence Graph

3

5

8

7

9

10

12

10

13

Comp 412, Fall 2008 11

Scheduling Example

1.! Build the precedence graph

2.!Determine priorities: longest latency-weighted path

3.!Perform list scheduling

l o ad A I r 0, @w ! r 1 1) a:

a d d r 1, r 1 ! r 1 4) b:

l o ad A I r 0, @ x ! r 2 2) c:

m ul t r 1, r 2 ! r 1 5) d:

l o ad A I r 0, @ y ! r 3 3) e:

m ul t r 1, r 3 ! r 1 7) f:

l o ad A I r 0, @z ! r 2 6) g:

m ul t r 1, r 2 ! r 1 9) h:

11) i: s t o r e A I r 1 ! r 0, @w

The Code

a

b c

d e

f
g

h

i

The Precedence Graph

3

5

8

7

9

10

12

10

13

New register name used

Comp 412, Fall 2008 14

More List Scheduling

List scheduling breaks down into two distinct classes

Variations on list scheduling

•! Prioritize critical path(s)

•! Schedule last use as soon as possible

•! Depth first in precedence graph (minimize registers)

•! Breadth first in precedence graph (minimize interlocks)

•! Prefer operation with most successors

Forward list scheduling

•! Start with available operations

•! Work forward in time

•! Ready ! all operands available

Backward list scheduling

•! Start with no successors

•! Work backward in time

•! Ready ! latency covers uses

Comp 412, Fall 2008 15

Schielke’s Scheduling Study

Non-optimal list schedules (%) versus available parallelism
1 functional unit, randomly generated blocks of 10, 20, 50 ops

•! 85,000 randomly generated blocks

•! RBF found optimal schedules for > 80%

•! Peak difficulty (for RBF) is around 2.8

Tie-breaking matters because
it affects the choice when
queue has > 1 element

3 compute months of work

Comp 412, Fall 2008 1

Register Allocation

Part of the compiler’s back end

Critical properties

•! Produce correct code that uses k (or fewer) registers

•! Minimize added loads and stores

•! Minimize space used to hold spilled values

•! Operate efficiently
O(n), O(n log2n), maybe O(n2), but not O(2n)

Register
Allocation

Errors

IR Instruction
Selection

k register
asm

Instruction
Scheduling

m register

asm

m register

asm

Code to Interference Graph

Lecture 1 47cs415, spring 09

An Example : Bottom-up

! Live Ranges

1 loadI 1028 ! r1 // r1
2 load r1 ! r2 // r1 r2
3 mult r1, r2 ! r3 // r1 r2 r3
4 loadI 5 ! r4 // r1 r2 r3 r4
5 sub r4, r2 ! r5 // r1 r3 r5
6 loadI 8 ! r6 // r1 r3 r5 r6
7 mult r5, r6 ! r7 // r1 r3 r7
8 sub r7, r3 ! r8 // r1 r8
9 store r8 ! r1 //

NOTE: live sets on exit of each instruction

by Uli Kremer

Lecture 1 47cs415, spring 09

An Example : Bottom-up

! Live Ranges

1 loadI 1028 ! r1 // r1
2 load r1 ! r2 // r1 r2
3 mult r1, r2 ! r3 // r1 r2 r3
4 loadI 5 ! r4 // r1 r2 r3 r4
5 sub r4, r2 ! r5 // r1 r3 r5
6 loadI 8 ! r6 // r1 r3 r5 r6
7 mult r5, r6 ! r7 // r1 r3 r7
8 sub r7, r3 ! r8 // r1 r8
9 store r8 ! r1 //

NOTE: live sets on exit of each instruction

by Uli Kremer

Interference Graph to Coloring

Comp 412, Fall 2008 6

Graph Coloring (A Background Digression)

The problem
A graph G is said to be k-colorable iff the nodes can be labeled
with integers 1… k so that no edge in G connects two nodes with
the same label

Examples

Each color can be mapped to a distinct physical register

2-colorable 3-colorable

Comp 412, Fall 2008 5

Global Register Allocation

Taking a global approach

•! Abandon the distinction between local & global

•! Make systematic use of registers or memory

•! Adopt a general scheme to approximate a good allocation

Graph coloring paradigm (Lavrov & (later) Chaitin)

1! Build an interference graph GI for the procedure
—! Computing LIVE is harder than in the local case

—! GI is not an interval graph

2! (try to) construct a k-coloring
—!Minimal coloring is NP-Complete

—! Spill placement becomes a critical issue

3! Map colors onto physical registers

Comp 412, Fall 2008 21

Improvement in Coloring Scheme

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)
•! If Chaitin’s algorithm reaches a state where every node has

k or more neighbors, it chooses a node to spill.

•! Briggs said, take that same node and push it on the stack
—!When you pop it off, a color might be available for it!

—! For example, a node n might have k+2 neighbors, but those
neighbors might only use 3 (<k) colors
!!Degree is a loose upper bound on colorability

2 Registers: Chaitin’s algorithm
immediately spills one
of these nodes

Lazy Code Motion

(Partial Redundancy Elimination)

COMP 512, Spring 2009! 3!

b ! b + 1
a ! b + c a ! b + c

a ! b + c

Inserting a copy of “a ! b + c” after the definition
of b can make it redundant fully redundant?

Partially Redundant Expression

An expression is partially redundant at p if it is redundant along

some, but not all, paths reaching p

Example

b ! b + 1 a ! b + c

a ! b + c

*

COMP 512, Spring 2009! 4!

Loop Invariant Expression

Another example

Loop invariant expressions are partially redundant

•! Partial redundancy elimination performs code motion

•! Major part of the work is figuring out where to insert operations

x ! y * z

a ! b * c

b+c is partially
redundant here

x ! y * z
a ! b * c

a ! b * c

COMP 512, Spring 2009! 3!

b ! b + 1
a ! b + c a ! b + c

a ! b + c

Inserting a copy of “a ! b + c” after the definition
of b can make it redundant fully redundant?

Partially Redundant Expression

An expression is partially redundant at p if it is redundant along

some, but not all, paths reaching p

Example

b ! b + 1 a ! b + c

a ! b + c

*

COMP 512, Spring 2009! 4!

Loop Invariant Expression

Another example

Loop invariant expressions are partially redundant

•! Partial redundancy elimination performs code motion

•! Major part of the work is figuring out where to insert operations

x ! y * z

a ! b * c

b+c is partially
redundant here

x ! y * z
a ! b * c

a ! b * c

Lazy Code Motion

• Sources
• Knoop, Ruthing, Steffen, PLDI 1992
• Dreschsler and Stadel, SIGPLAN 1993
• Chapter 10, Engineering a compiler

• Intuition
• computer available and anticipable expressions
• compute the earliest placement for each expression
• push expressions down the CFG to the last point with no

redundancy
• Solving a set of data flow equations

• availability, anticipable, earliest placement, later placement,
insert, delete

27

