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What Makes Code Run Fast? 

•! Many operations have non-zero latencies 

•! Modern machines can issue several operations per cycle 

•! Execution time is order-dependent    (and has been since the 60’s)  

Assumed latencies   (conservative) 

Operation       Cycles  
load   3 
store   3 
loadI   1 
add   1 
mult   2 
fadd   1 
fmult   2 
shift   1 
branch          0 to 8 

•! Loads & stores may or may not block 

>! Non-blocking !fill those issue slots 

•! Branch costs vary with path taken 

•! Branches typically have delay slots 
>! Fill slots with unrelated operations 
>! Percolates branch upward 

•! Scheduler should hide the latencies 

Lab 3 will build a local scheduler 
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Example 

w " w * 2 * x  * y * z 

1 loadAI r0,@w ! r1

4 add r1,r1 ! r1

5 loadAI r0,@x ! r2

8 mult r1,r2 ! r1

9 loadAI r0,@y ! r2

12 mult r1,r2 ! r1

13 loadAI r0,@z ! r2

16 mult r1,r2 ! r1

   18 storeAI r1 ! r0,@w

21 r1 is free

1 loadAI r0,@w ! r1

2 loadAI r0,@x ! r2

3 loadAI r0,@y ! r3

4 add r1,r1 ! r1

5 mult r1,r2 ! r1

6 loadAI r0,@z ! r2

7 mult r1,r3 ! r1

9 mult r1,r2 ! r1

11 storeAI r1 ! r0,@w

14 r1 is free

Simple schedule Schedule loads early 

2 registers, 20 cycles 3 registers, 13 cycles 

Reordering operations for speed is called instruction scheduling 
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Instruction Scheduling (Engineer’s View) 

The Problem 

Given a code fragment for some target machine and the  
latencies for each individual operation, reorder the operations 
to minimize execution time 

The Concept 

Scheduler 
slow 

code 

fast 

code 

Machine description 

The Task 

•! Produce correct code 

•! Minimize wasted cycles 

•! Avoid spilling registers 

•! Operate efficiently  
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Instruction Scheduling    (The Abstract View) 

To capture properties of the code, build a precedence graph G 

•! Nodes  n ! G are operations with type(n) and delay(n)  

•! An edge e = (n1,n2) ! G if & only if n2 uses the result of n1  

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code 

a 

b c 

d e 

f 
g 

h 

i 

The Precedence Graph 
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Instruction Scheduling                (Definitions) 

A correct schedule S maps each n! N into a non-negative integer 
representing its cycle number, and 

 1. S(n) ! 0, for all n ! N, obviously  
2. If (n1,n2) ! E, S(n1 ) + delay(n1 ) ! S(n2 ) 
3. For each type t, there are no more operations of type t in any cycle 

than the target machine can issue 

The length of a schedule S, denoted L(S), is  
 L(S) = maxn ! N (S(n) + delay(n)) 

The goal is to find the shortest possible correct schedule. 
S is time-optimal if L(S) ! L(S1 ), for all other schedules S1  
A schedule might also be optimal in terms of registers, power, or 

space…. 
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Instruction Scheduling  (What’s so difficult?) 

Critical Points 

•! All operands must be available  

•! Multiple operations can be ready 

•! Moving operations can lengthen register lifetimes 

•! Placing uses near definitions can shorten register lifetimes 

•! Operands can have multiple predecessors 

Together, these issues make scheduling hard  (NP-Complete) 

Local scheduling is the simple case 

•! Restricted to straight-line code 

•! Consistent and predictable latencies 
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Instruction Scheduling: The Big Picture 

1.  Build a precedence graph, P 
2.  Compute a priority function over the nodes in P 
3.  Use list scheduling to construct a schedule, one cycle at a 

time 
a.  Use a queue of operations that are ready 
b.  At each cycle 

 I.  Choose the highest priority ready operation and schedule 
it 

II.  Update the ready queue 

Local list scheduling 
•! The dominant algorithm for twenty years 
•! A greedy, heuristic, local technique  
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Local List Scheduling 

Cycle " 1 
Ready " leaves of P 
Active " Ø 

while (Ready # Active $ Ø) 
    if (Ready $ Ø) then 
       remove an op from Ready 
       S(op) " Cycle 
       Active ¬ Active  # op 

    Cycle " Cycle + 1 

    for each op % Active 
         if (S(op) + delay(op) ! Cycle) then 
            remove op from Active 
            for each successor s of op in P 
                 if (s is ready) then 
                    Ready " Ready # s 

Removal in priority order 

op has completed execution 

If successor’s operands are 
ready, put it on Ready 
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Scheduling Example 

1.! Build the precedence graph 

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code 

a 

b c 

d e 

f 
g 

h 

i 

The Precedence Graph 
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Scheduling Example 

1.! Build the precedence graph 

2.!Determine priorities: longest latency-weighted path 

a: loadAI r0,@w ! r1

b: add r1,r1 ! r1

c: loadAI r0,@x ! r2

d: mult r1,r2 ! r1

e: loadAI r0,@y ! r2

f: mult r1,r2 ! r1

g: loadAI r0,@z ! r2

h: mult r1,r2 ! r1

i: storeAI r1 ! r0,@w

The Code 

a 

b c 

d e 

f 
g 

h 

i 

The Precedence Graph 

3 

5 

8 

7 

9 

10 

12 

10 

13 
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Scheduling Example 

1.! Build the precedence graph 

2.!Determine priorities: longest latency-weighted path 

3.!Perform list scheduling 

l o ad A I r 0, @w ! r 1 1)  a: 

a d d r 1, r 1 ! r 1 4)  b: 

l o ad A I r 0, @ x ! r 2 2)  c: 

m ul t r 1, r 2 ! r 1 5)  d: 

l o ad A I r 0, @ y ! r 3 3)  e: 

m ul t r 1, r 3 ! r 1 7)  f: 

l o ad A I r 0, @z ! r 2 6)  g: 

m ul t r 1, r 2 ! r 1 9)  h: 

11) i: s t o r e A I r 1 ! r 0, @w 

The Code 

a 

b c 

d e 

f 
g 

h 

i 

The Precedence Graph 

3 

5 

8 

7 

9 

10 

12 

10 

13 

New register name used 
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More List Scheduling 

List scheduling breaks down into two distinct classes 

Variations on list scheduling 

•! Prioritize critical path(s) 

•! Schedule last use as soon as possible 

•! Depth first in precedence graph (minimize registers) 

•! Breadth first in precedence graph (minimize interlocks) 

•! Prefer operation with most successors    

Forward list scheduling 

•! Start with available operations 

•! Work forward in time 

•! Ready ! all operands available 

Backward list scheduling 

•! Start with no successors 

•! Work backward in time 

•! Ready ! latency covers uses 
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Schielke’s Scheduling Study 

Non-optimal list schedules (%) versus available parallelism 
1 functional unit, randomly generated blocks of 10, 20, 50 ops 

•! 85,000 randomly generated blocks 

•! RBF found optimal schedules for > 80%  

•! Peak difficulty (for RBF) is around 2.8  

Tie-breaking matters because 
it affects the choice when 
queue has > 1 element 

3 compute months of work 
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Register Allocation 

Part of the compiler’s back end 

Critical properties 

•! Produce correct code that uses k (or fewer) registers 

•! Minimize added loads and stores 

•! Minimize space used to hold spilled values 

•! Operate efficiently  
O(n), O(n log2n), maybe O(n2), but not O(2n) 

Register 
Allocation 

Errors  

IR Instruction 
Selection 

k register 
asm 

Instruction 
Scheduling 

m register 

asm 

m register 

asm 

Code to Interference Graph

Lecture 1 47cs415, spring 09

An Example : Bottom-up

! Live Ranges

1   loadI 1028 ! r1 // r1
2 load r1 ! r2 // r1 r2 
3 mult r1, r2 ! r3 // r1 r2 r3
4 loadI 5 ! r4 // r1 r2 r3 r4
5 sub  r4, r2 ! r5 // r1 r3 r5
6 loadI 8 ! r6 // r1 r3 r5 r6
7 mult r5, r6 ! r7 // r1 r3 r7
8 sub  r7, r3 ! r8 // r1 r8
9 store r8 ! r1 //

NOTE: live sets on exit of each instruction 

by Uli Kremer
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An Example : Bottom-up

! Live Ranges

1   loadI 1028 ! r1 // r1
2 load r1 ! r2 // r1 r2 
3 mult r1, r2 ! r3 // r1 r2 r3
4 loadI 5 ! r4 // r1 r2 r3 r4
5 sub  r4, r2 ! r5 // r1 r3 r5
6 loadI 8 ! r6 // r1 r3 r5 r6
7 mult r5, r6 ! r7 // r1 r3 r7
8 sub  r7, r3 ! r8 // r1 r8
9 store r8 ! r1 //

NOTE: live sets on exit of each instruction 

by Uli Kremer

Interference Graph to Coloring
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Graph Coloring              (A Background Digression) 

The problem 
A graph G  is said to be k-colorable  iff the nodes can be labeled 
with integers 1… k so that no edge in G connects two nodes with 
the same label  

Examples 

Each color can be mapped to a distinct physical register 

2-colorable 3-colorable 
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Global Register Allocation 

Taking a global approach 

•! Abandon the distinction between local & global  

•! Make systematic use of registers or memory 

•! Adopt a general scheme to approximate a good allocation 

Graph coloring paradigm                          (Lavrov & (later) Chaitin ) 

1! Build an interference graph GI for the procedure 
—! Computing LIVE is harder than in the local case 

—! GI is not an interval graph 

2! (try to) construct a k-coloring 
—!Minimal coloring is NP-Complete 

—! Spill placement becomes a critical issue 

3! Map colors onto physical registers 
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Improvement in Coloring Scheme 

Optimistic Coloring     (Briggs, Cooper, Kennedy, and Torczon) 
•! If Chaitin’s algorithm reaches a state where every node has 

k or more neighbors, it chooses a node to spill. 

•! Briggs said, take that same node and push it on the stack  
—!When you pop it off, a color might be available for it! 

—! For example, a node n might have k+2 neighbors, but those 
neighbors might only use 3 (<k) colors 
!!Degree is a loose upper bound on colorability 

2 Registers: Chaitin’s algorithm 
immediately spills one 
of these nodes  

Lazy Code Motion

(Partial Redundancy Elimination)
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b ! b + 1 
a ! b + c a ! b + c 

a ! b + c 

Inserting a copy of  “a ! b + c” after the definition 
of  b can make it redundant fully redundant? 

Partially Redundant Expression 

An expression is partially redundant at p if it is redundant along 

some, but not all, paths reaching p 

Example 

b ! b + 1 a ! b + c 

a ! b + c 

* 
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Loop Invariant Expression 

Another example 

Loop invariant expressions are partially redundant 

•! Partial redundancy elimination performs code motion 

•! Major part of the work is figuring out where to insert operations 

x ! y * z 

a ! b * c 

b+c is partially  
redundant here 

x ! y * z 
a ! b * c 

a ! b * c 
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b ! b + 1 
a ! b + c a ! b + c 

a ! b + c 

Inserting a copy of  “a ! b + c” after the definition 
of  b can make it redundant fully redundant? 

Partially Redundant Expression 

An expression is partially redundant at p if it is redundant along 

some, but not all, paths reaching p 

Example 

b ! b + 1 a ! b + c 

a ! b + c 

* 
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Loop Invariant Expression 

Another example 

Loop invariant expressions are partially redundant 

•! Partial redundancy elimination performs code motion 

•! Major part of the work is figuring out where to insert operations 

x ! y * z 

a ! b * c 

b+c is partially  
redundant here 

x ! y * z 
a ! b * c 

a ! b * c 

Lazy Code Motion

• Sources
• Knoop, Ruthing, Steffen, PLDI 1992
• Dreschsler and Stadel, SIGPLAN 1993
• Chapter 10, Engineering a compiler

• Intuition
• computer available and anticipable expressions
• compute the earliest placement for each expression
• push expressions down the CFG to the last point with no 

redundancy
• Solving a set of data flow equations

• availability, anticipable, earliest placement, later placement, 
insert, delete

27


