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Beyond Dataflow: Interprocedural Analysis and 
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Instructor: Chen Ding
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Problem classification: Allen-Kennedy book, Chapter 
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3/5/2014 Introduction

• Interprocedural Analysis
• Gathering information about the whole program instead of a 

single procedure
• Do you know any such analysis?

• Interprocedural Optimization
• Program transformation involving more than one function
• Do you know a transformation?

• Other names of the procedure construct
• function in C, subroutine in Fortran, method, lambda
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Enter main

Call p Call p

Enter p

Can we simply model procedure call/
return as control flow jumps?

Enter main

sum = 0 i = 1 while(i < 11) printf(sum) printf(i)

Call add Call add

xin = sum yin = i sum = xout xin = i yin= 1 i = xout

Enter add

x = xin y = yin x = x + y xout = x

Call-by-value Parameter Passing

Overview: Interprocedural Analysis

• Examples of Interprocedural problems
• Classification of Interprocedural problems
• Side-effect Analysis
• Jump functions in constant propagation
• Symbolic analysis
• Pointer analysis
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Some Interprocedural Problems

• Modification and Reference Side-effect
   COMMON X,Y
   ...
   DO I = 1, N

 S0: CALL P
 S1: X(I) = X(I) + Y(I)

   ENDDO

• Can S1 be parallelized?
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Alias Analysis

   SUBROUTINE S(A,X,N)
    COMMON Y
    DO I = 1, N
   S0:  X = X + Y*A(I)
    ENDDO
   END
• Could have kept X and Y in different registers and stored in X 

outside the loop
• What happens when there is a call, CALL S(A,Y,N)?

• Then Y is aliased to X on entry to S
• Can’t delay update to X in the loop any more

• ALIAS(p,x): set of variables that may refer to the same location 
as formal parameter x on entry to p
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Call Graph Construction

• Call Graph G=(N,E)
• N: one vertex for each procedure
• E: one edge for each possible call

• Edge (p,q) is in E if procedure p calls procedure q
• Looks easy
• Construction difficult in presence of procedure parameters
• A call site

• a control flow node inside the caller procedure
• a procedure may have multiple call sites
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Live and Use Analysis

• Solve Live analysis using Use Analysis
• USE(s): set of variables having an upward exposed use in 

procedure p called at s
• At a call site, s is in a single basic block(b), x is live if either 

• x in USE(s) or
• P doesn’t assign a new value to x and x is live in some control 

flow successor of b
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Interprocedural Problem Classification

• May and Must problems
• MOD, REF and USE are ‘May’ problems
• KILL is a ‘Must’ problem

• Flow sensitive and flow insensitive problems
• Flow sensitive: control flow info important
• Flow insensitive: control flow info unimportant
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A

B
BA

R1 R2

MOD(R1) = MOD(A)∪MOD(B)
MOD(R2) = MOD(A)∪MOD(B)

REF(R1) = REF(A)∪ REF(B)
REF(R2) = REF(A)∪ REF(B)

KILL(R1) = KILL(A)∪ KILL(B)
KILL(R2) = KILL(A)∩ KILL(B)

USE(R1) =USE(A)∪ (¬KILL(A)∩USE(B))
USE(R2) =USE(A)∪USE(B)

Flow Sensitive vs Flow Insensitive
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Classification (continued)

• A problem is flow insensitive iff solution of both sequential and 
alternately composed regions is determined by taking union of 
subregions

• Side-effect vs Propagation problems
• MOD, REF, KILL and USE are side-effect
• ALIAS, CALL and CONST are propagation

12



Flow Insensitive Side-effect Analysis

• Assumptions
• No procedure nesting
• All parameters passed by reference
• Size of the parameter list bounded by a constant,

• MOD(s) can be solved in linear time
• see the textbook
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SUBROUTINE FOO(N)
   INTEGER N,M
   CALL INIT(M,N)
   DO I = 1,P
      B(M*I + 1) = 2*B(1)
   ENDDO
END

SUBROUTINE INIT(M,N)
   M = N
END

If N = 0 on entry to FOO, the loop  is a reduction.
Otherwise, we can vectorize the loop.

Constant Propagation

• Propagating constants between procedures can cause significant 
improvements.

• Dependence testing can be made more precise.
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• Definition:  Let s = (p,q) be a call site in procedure p, and let 
x be a parameter of q.  Then     , the jump function for x at 
s, gives the value of x in terms of parameters of p.

• The support of     is the set of p-parameters that      is 
dependent on.

Js
x

Js
xJs

x

Constant Propagation
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• Instead of a Def-Use graph, we construct an interprocedural 
value graph:
• Add a node to the graph for each jump function     
• If x belongs to the support of    , where t lies in the procedure 

q, then add an edge  between      and      for every call site s 
=(p,q) for some p.

• We can now apply the constant propagation algorithm to this 
graph.  
• Might want to iterate with global propagation

Js
x
Jt
y

Js
x

Jt
y

Constant Propagation
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 Jα
X

Jβ
VJβ

U

Jα
Y

The constant-propagation algorithm will
Eventually converge to above values.
(might need to iterate with global)

1 2

-13

Example

  PROGRAM MAIN
      INTEGER A,B
      A = 1
      B = 2
  α   CALL S(A,B)
  END
  SUBROUTINE S(X,Y)
      INTEGER X,Y,Z,W
      Z = X + Y
   W = X - Y
     β   CALL T(Z,W)
  END
  SUBROUTINE T(U,V)
      PRINT U,V
  END
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Symbolic Analysis

• Prove facts about variables other than constancy:
• Find a symbolic expression for a variable in terms of other 

variables.
• Establish a relationship between pairs of variables at some 

point in program.
• Establish a range of values for a variable at a given point.

• Array section analysis

18



Program Analysis via CFL Reachability

http://research.cs.wisc.edu/wpis/papers/tr1386.pdf
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Thomas W. Reps
Professor
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706-1685
USA

Contact Information:

E-mail: reps at cs.wisc.edu
Telephone: (608) 262-2091
Department: (608) 262-1204
Fax: (608) 262-9777

Some Maps: Campus Map | Campus-to-Capitol Map | City Map

Ph.D., Cornell University, 1982 (CV, Biography, Current Research, Summary of Past
Research)

Research Interests:

Program slicing, differencing, and merging
Interprocedural dataflow analysis
Alias analysis, pointer analysis, and shape analysis
Analysis of multi-threaded programs

Possibly Uninitialized Variables
Start

x = 3

if . . .

y = x
y = w

w = 8

printf(y)

{w,x,y}

{w,y}

{w,y}

{w,y}

{w}

{w,y}{}

{w,y}

{}

Precise Intraprocedural Analysis

start n

C
x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

(

)
]

(

call 
site 1 call 

site 2

Precise Interprocedural Analysis

start n

C ret

( )

[Sharir & Pnueli 81]

Representing Dataflow Functions

Identity Function

Constant Function

a b c

a b c



Representing Dataflow Functions
“Gen/Kill” Function

Non-“Gen/Kill” Function a b c

a b c
x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

x y a b

a b c

b ca

Composing Dataflow Functions
b ca

x = 3

p(x,y)

return from p

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

exit p

x y a b

printf(y)

Might b be
uninitialized
here?

printf(b) NO!

(

]

Might y be
uninitialized
here?

YES!

(

)

Exhaustive Versus Demand Analysis

• Exhaustive analysis: All facts at all points
• Optimization: Concentrate on inner loops
• Program-understanding tools: Only some facts 

are of interest

What Are Slices Useful For?
• Understanding Programs

–What is affected by what?
• Restructuring Programs

–Isolation of separate “computational threads”
• Program Specialization and Reuse

–Slices = specialized programs
–Only reuse needed slices

• Program Differencing
–Compare slices to identify changes

• Testing
–What new test cases would improve coverage?
–What regression tests must be rerun after a change?



Line-Character-Count Program
void line_char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
  lines = lines + 1;
  scan_line(f, &eof_flag, &n);
  chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Character-Count Program
void char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
  lines = lines + 1;
  scan_line(f, &eof_flag, &n);
  chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Line-Character-Count Program
void line_char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
  lines = lines + 1;
  scan_line(f, &eof_flag, &n);
  chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Line-Count Program
void line_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line2(FILE *f, BOOL *bptr, int *iptr);
 scan_line2(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
  lines = lines + 1;
  scan_line2(f, &eof_flag, &n);
  chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Exhaustive Versus Demand Analysis

• Demand analysis:
–Does a given fact hold at a given point?
–Which facts hold at a given point?
–At which points does a given fact hold?

• Demand analysis via CFL-reachability
–single-source/single-target CFL-reachability
–single-source/multi-target CFL-reachability
–multi-source/single-target CFL-reachability

x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

x y a b

YES!

(

)

NO!

“Semi-exhaustive”:
All “appropriate” demands

Might y be
uninitialized
here?

Might b be
uninitialized
here?



CFL-Reachability: Scope of Applicability
• Static analysis

–Slicing, DFA, structure-transmitted dep., points-
to analysis

• Verification
–Security of crypto-based protocols for distributed 

systems [Dolev, Even, & Karp 83]
–Model-checking recursive HFSMs

• Formal-language theory
–CF-, 2DPDA-, 2NPDA-recognition
–Attribute-grammar analysis

CFL-Reachability: Benefits
• Algorithms

–Exhaustive & demand
• Complexity

–Linear-time and cubic-time algorithms
–PTIME-completeness
–Variants that are undecidable

• Complementary to
–Equations
–Set constraints
–Types
–. . .


