248 commits
3/5/2014 Introduction

+ Interprocedural Analysis

Beyond Dataflow: InTerpr'ocedur'al Analysis and + Gathering information about the whole program instead of a
single procedure

CFL reachability + Doyou know any such analysis?
+ Interprocedural Optimization

* Program transformation involving more than one function

Instructor: Chen Ding + Do you know a transformation?
Reading: + Other names of the procedure construct

. ion in C, sub ine i d, lambd
Problem classification: Allen-Kennedy book, Chapter function in €, subroutine in Fortran, method, lambda
11 (11.2.1-2 required).
CFL-reachability: Reps' TR http://research.cs.wisc.edu/

wpis/papers/tr1386.pdf

Can we simply model procedure call/

Enter main

return as control flow jumps? S
\>
[sum = o] [i = 1] Hwhiledi < 11)\/\, [printt (sum]
« N | % R

Yin=1 ‘ ‘Sum:xout Yin~ 1 ‘
. S

—
Xjp = sum ‘ T = Xout

/ Enter p \

STV

Overview: Interprocedural Analysis Some Interprocedural Problems

- Examples of Interprocedural problems * Modification and Reference Side-effect

COMMON XY
+ Classification of Interprocedural problems
+ Side-effect Analysis DOI=1,N
- Jump functions in constant propagation S0 CALLP
)) S X(I) = X(T) + Y(T)
* Symbolic analysis ENDDO
* Pointer analysis * Can S1 be parallelized?

Alias Analysis

SUBROUTINE S(A,X,N)
COMMON Y
DOI=1,N
S0: X = X + Y*A(T)
ENDDO
END
+ Could have kept X and Y in different registers and stored in X
outside the loop
* What happens when there is a call, CALL S(A,Y N)?
- ThenY is aliased to X on entry o S
+ Can't delay update to X in the loop any more

+ ALIAS(p x): set of variables that may refer fo the same location

as formal parameter x on entry to p

Live and Use Analysis

+ Solve Live analysis using Use Analysis
* USE(s): set of variables having an upward exposed use in
procedure p called at s
+ At a call site, s is in a single basic block(b), x is live if either
* x in USE(s) or
+ P doesn't assign a new value to x and x is live in some control
flow successor of b

Flow Sensitive vs Flow Insensitive

@,
@
@ (®
®)
O
RI R2

MOID(RIl) = MOD(A)U MOIXB) KILL(R!) = KILL(A)U KILL(B)
MOIXR2) = MO A)U MODXB) KILL(R2)= KILL(A)N KILL(B)

REF(R1) = REF(A) U REF(B) USE(R1) = USE(A) U (~KILL(A) N USE(B))
REF(R2) = REF(A) U REF (B) USE(R2) = USE(A) U USE(B)

11

Call Graph Construction

+ Call Graph 6=(N,E)

* N: one vertex for each procedure
+ E: one edge for each possible call
+ Edge (p.q) is in E if procedure p calls procedure q

* Looks easy
+ Construction difficult in presence of procedure parameters
* A call site

+ a control flow node inside the caller procedure
+ a procedure may have multiple call sites

Interprocedural Problem Classification

* May and Must problems

+ MOD, REF and USE are ‘May’ problems
* KILL is a 'Must' problem

* Flow sensitive and flow insensitive problems

* Flow sensitive: control flow info important
* Flow insensitive: control flow info unimportant

Classification (continued)

* A problem is flow insensitive iff solution of both sequential and

alternately composed regions is determined by taking union of
subregions

+ Side-effect vs Propagation problems

+ MOD, REF, KILL and USE are side-effect
+ ALIAS, CALL and CONST are propagation

Flow Insensitive Side-effect Analysis Constant Propagation

* Assumptions * Propagating constants between procedures can cause significant

* No procedure nesting improvements.
+ All parameters passed by reference . d ; b d ;
+ Size of the parameter list bounded by a constant, Dependence testing can be made more precise.
- MOD(s) can be solved in linear time
. see the textbook SUB};S;};(I}I;E zc,)lo/[(N) SUB;OST;NE INIT(M,N)
CALL INIT(M,N) END
DO I =1,P
B(M*I + 1) = 2*B(1)
ENDDO
END
If N=0onentry to FOO, the loop is a reduction.
Otherwise, we can vectorize the loop.
13 14
Constant Propagation Constant Propagation
 Definition: Let s = (p,q) be a call site in procedure p, and let * Instead of a Def-Use graph, we construct an interprocedural
N . . value graph:
x be a parameter of q. Then J*, the jump function for x at . . x
ives the value of x in ’rermé’of arameters of + Add a hode to the graph for each jump function J,
S, gives The valu P P- « If x belongs to the support of J”, where 1 lies in the procedure
q, then add an edge between J_ and J; for every call site s
- The support of J; is the set of p-parameters that j* is =(p.q) for some p.
dependent on. - We can now apply the constant propagation algorithm to this
graph.

* Might want to iterate with global propagation

Example Symbolic Analysis
* Prove facts about variables other than constancy:

PROGRAM MAIN 1 2 . X . o

INTEGER A B + Find a symbolic expression for a variable in terms of other

A=1 variables.
“ EA'LIZ_ S(AR) * Establish a relationship between pairs of variables at some
END point in program.
SUBROUTINE S(X.Y) - Establish a range of values for a variable at a given point.

INTEGER X.Y.Z,W) ;
SN 3 Q _1 « Array section analysis
W=X-Y

B CALL T(ZW)
END

SUBROUTINE T(U,V) . . .
PRINT U,V The constant-propagation algorithm will
END Eventually converge to above values.

(might need tfo iterate with global)

Thomas W. Reps

Professor

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706-1685

USA

Program Analysis via CFL Reachability

http://research.cs.wisc.edu/wpis/papers/tr1386.pdf

Precise /ntraprocedural Analysis
Cf f, fo. i
[[]

@ cece e @ [) [)
start n

pfp=fk°fk_1"'°fz°f1

MoP[n]= [pf (©)

pEPathsTo[n]

Precise /nterprocedural Analysis

¢ f f, call, ret f f,
Y Y | JORIR] ® ®
start f, () £ n
start, e o exit,
f. / i
° K
e
MOMP[n] = U pf (©
pEMatchedPathsTo[7] r

[Sharir & Pnueli 81]

Possibly Uninitialized Variables
! (s
()

{wy
AV.if xEV {w,y}
then VU {y} {
else V' —{y}
AV.ifweV
then V' U {y}
XVV—{W} { \ g : else V—{y}

Representing Dataflow Functions

Identity Function A a boc
f=ANVV I
f({a,b}) ={a,b}

Constant Function A a b c
f=AV.{b}

f({a,b}) = {b} . .

Representing Dataflow Functions
“Gen/Kill” Function
f=AV.(V = {b}) U {c}
f({a,b}) = {a,c}

Non-“Gen/Kill” Function A a 2 c
f=AV.ifa€V

then V' U {b}

else V - {b}

f({a,b}) = {a,b;

Composing Dataflow Functions

£ =AV.if a€V A2 b
then V' U {b}
elseV - {b}
f,=AV.ifbeEV
then {c}
else) L o o

f,of({a,c}) =|{c}

Exhaustive Versus Demand Analysis

* Exhaustive analysis: facts at '/ points
* Optimization: Concentrate on inner loops

* Program-understanding tools: Only some facts

are of interest

Might y be
_| uninitialized
here?

What Are Slices Useful For?

* Understanding Programs
—What is affected by what?

* Restructuring Programs
—Isolation of separate “computational threads”

* Program Specialization and Reuse

—Slices = specialized programs
—Only reuse needed slices
* Program Differencing
—Compare slices to identify changes
* Testing
—What new test cases would improve coverage?
—What regression tests must be rerun after a change?

Line-Character-Count Program

void line char count (FILE *f) ({
int lines = 0;
int chars;
BOOL eof flag = FALSE;
int n;
extern void scan_line(FILE *£, BOOL *bptr, int *iptr);
scan_line(f, &eof_ flag, &n);
chars = n;
while (eof flag == FALSE) {
lines = lines + 1;
scan_line(f, &eof flag, &n);
chars = chars + n;
}
printf (“lines
printf (“chars

%$d\n”, lines) ;
%$d\n”, chars);

Line-Character-Count Program

void line char count (FILE *f) ({
int lines = 0;
int chars;
BOOL eof flag = FALSE;
int n;
extern void scan_line(FILE *£, BOOL *bptr, int *iptr);
scan_line(f, &eof_ flag, &n);
chars = n;
while (eof flag == FALSE) {
lines = lines + 1;
scan_line(f, &eof flag, &n);
chars = chars + n;
}
printf (“lines
printf (“chars

$d\n”, lines) ;
%$d\n”, chars);

Exhaustive Versus Demand Analysis

* Demand analysis:

—Does a fact hold at a point?
facts hold at a point?
—At points does a fact hold?

* Demand analysis via CFL-reachability
—single-source/single-target CFL-reachability
—single-source/multi-target CFL-reachability
—multi-source/single-target CFL-reachability

Character-Count Program

int lines = 0;

lines = lines + 1;

printf (“lines = %d\n”, lines);

Line-Count Program

int chars;

int n;

, int *iptr

chars + n;

printf (“chars = %d\n”, chars);

CFL-Reachability: Scope of Applicability

« Static analysis
—Slicing, DFA, structure-transmitted dep., points-
to analysis
* Verification

—Security of crypto-based protocols for distributed
systems [Dolev, Even, & Karp 83]

—Model-checking recursive HFSMs
* Formal-language theory

—CF-, 2DPDA-, 2NPDA -recognition

—Attribute-grammar analysis

CFL-Reachability: Benefits

* Algorithms

—Exhaustive & demand

» Complexity

—Linear-time and cubic-time algorithms
—PTIME-completeness
—Variants that are undecidable

.C

omplementary to

—Equations

Set constraints
ypes

