
CSC 255/455

Beyond Dataflow: Interprocedural Analysis and
CFL reachability

Instructor: Chen Ding
Reading:
Problem classification: Allen-Kennedy book, Chapter
11 (11.2.1-2 required).
CFL-reachability: Reps’ TR http://research.cs.wisc.edu/
wpis/papers/tr1386.pdf

2/26/2014 /Users/cding/cs255hg: revision graph

http://localhost:8000/graph/b48f23a0aea8 1/3

log

graph
tags

bookmarks

branches

changeset

browse

help

Mercurial
graph

less more | rev 241: (0) -100 -60 tip

slides for instruction scheduling, register allocation and partial redundancy removal default tip

slides on ssa uses

Merge yzh145

assignment 2 submission, the files are in /assignment/2_pass/base/gcc yzh145

branch merge update yzh145

branch commit yzh145

branch merge yzh145

Yanan Zhang's Homework yzh145

merge pli

any pli

merge ysong23

merge xjin6

Add GC Fixed Point notes

merge xjin6

readd test.rb

clean up the default branch

add summary of counts pli

assign. 2 pli

merge xhu9

update makefile xhu9

Merge from default hxu

merge

before merge

merge

homework1 added

merge default pli

merge pli

merged

2 minutes ago, by Chen Ding

16 minutes ago, by Chen Ding

5 days ago, by Yanan, Zhang

11 days ago, by Yanan, Zhang

12 days ago, by Yanan, Zhang

2 weeks ago, by Yanan, Zhang

2 weeks ago, by Yanan, Zhang

3 weeks ago, by Yanan, Zhang

20 hours ago, by Pengcheng, Li

20 hours ago, by Pengcheng, Li

5 days ago, by Yang, Song

5 days ago, by Xi Jin

5 days ago, by Gernhardt, Brian

6 days ago, by Xi Jin

6 days ago, by Lingxiang Xiang

6 days ago, by Lingxiang Xiang

6 days ago, by Pengcheng, Li

6 days ago, by Pengcheng, Li

6 days ago, by Xiaoyu, Hu

6 days ago, by Xiaoyu, Hu

6 days ago, by Hao, Xu

6 days ago, by cs255

6 days ago, by cs255

6 days ago, by Lingxiang, Xiang

6 days ago, by Lingxiang, Xiang

6 days ago, by Pengcheng, Li

13 days ago, by Pengcheng, Li

6 days ago, by Chen Ding

248 commits
3/5/2014 Introduction

• Interprocedural Analysis
• Gathering information about the whole program instead of a

single procedure
• Do you know any such analysis?

• Interprocedural Optimization
• Program transformation involving more than one function
• Do you know a transformation?

• Other names of the procedure construct
• function in C, subroutine in Fortran, method, lambda

2

Enter main

Call p Call p

Enter p

Can we simply model procedure call/
return as control flow jumps?

Enter main

sum = 0 i = 1 while(i < 11) printf(sum) printf(i)

Call add Call add

xin = sum yin = i sum = xout xin = i yin= 1 i = xout

Enter add

x = xin y = yin x = x + y xout = x

Call-by-value Parameter Passing

Overview: Interprocedural Analysis

• Examples of Interprocedural problems
• Classification of Interprocedural problems
• Side-effect Analysis
• Jump functions in constant propagation
• Symbolic analysis
• Pointer analysis

5

Some Interprocedural Problems

• Modification and Reference Side-effect
 COMMON X,Y
 ...
 DO I = 1, N

 S0: CALL P
 S1: X(I) = X(I) + Y(I)

 ENDDO

• Can S1 be parallelized?

6

Alias Analysis

 SUBROUTINE S(A,X,N)
 COMMON Y
 DO I = 1, N
 S0: X = X + Y*A(I)
 ENDDO
 END
• Could have kept X and Y in different registers and stored in X

outside the loop
• What happens when there is a call, CALL S(A,Y,N)?

• Then Y is aliased to X on entry to S
• Can’t delay update to X in the loop any more

• ALIAS(p,x): set of variables that may refer to the same location
as formal parameter x on entry to p

7

Call Graph Construction

• Call Graph G=(N,E)
• N: one vertex for each procedure
• E: one edge for each possible call

• Edge (p,q) is in E if procedure p calls procedure q
• Looks easy
• Construction difficult in presence of procedure parameters
• A call site

• a control flow node inside the caller procedure
• a procedure may have multiple call sites

8

Live and Use Analysis

• Solve Live analysis using Use Analysis
• USE(s): set of variables having an upward exposed use in

procedure p called at s
• At a call site, s is in a single basic block(b), x is live if either

• x in USE(s) or
• P doesn’t assign a new value to x and x is live in some control

flow successor of b

9

Interprocedural Problem Classification

• May and Must problems
• MOD, REF and USE are ‘May’ problems
• KILL is a ‘Must’ problem

• Flow sensitive and flow insensitive problems
• Flow sensitive: control flow info important
• Flow insensitive: control flow info unimportant

10

A

B
BA

R1 R2

MOD(R1) = MOD(A)∪MOD(B)
MOD(R2) = MOD(A)∪MOD(B)

REF(R1) = REF(A)∪ REF(B)
REF(R2) = REF(A)∪ REF(B)

KILL(R1) = KILL(A)∪ KILL(B)
KILL(R2) = KILL(A)∩ KILL(B)

USE(R1) =USE(A)∪ (¬KILL(A)∩USE(B))
USE(R2) =USE(A)∪USE(B)

Flow Sensitive vs Flow Insensitive

11

Classification (continued)

• A problem is flow insensitive iff solution of both sequential and
alternately composed regions is determined by taking union of
subregions

• Side-effect vs Propagation problems
• MOD, REF, KILL and USE are side-effect
• ALIAS, CALL and CONST are propagation

12

Flow Insensitive Side-effect Analysis

• Assumptions
• No procedure nesting
• All parameters passed by reference
• Size of the parameter list bounded by a constant,

• MOD(s) can be solved in linear time
• see the textbook

13

SUBROUTINE FOO(N)
 INTEGER N,M
 CALL INIT(M,N)
 DO I = 1,P
 B(M*I + 1) = 2*B(1)
 ENDDO
END

SUBROUTINE INIT(M,N)
 M = N
END

If N = 0 on entry to FOO, the loop is a reduction.
Otherwise, we can vectorize the loop.

Constant Propagation

• Propagating constants between procedures can cause significant
improvements.

• Dependence testing can be made more precise.

14

• Definition: Let s = (p,q) be a call site in procedure p, and let
x be a parameter of q. Then , the jump function for x at
s, gives the value of x in terms of parameters of p.

• The support of is the set of p-parameters that is
dependent on.

Js
x

Js
xJs

x

Constant Propagation

15

• Instead of a Def-Use graph, we construct an interprocedural
value graph:
• Add a node to the graph for each jump function
• If x belongs to the support of , where t lies in the procedure

q, then add an edge between and for every call site s
=(p,q) for some p.

• We can now apply the constant propagation algorithm to this
graph.
• Might want to iterate with global propagation

Js
x
Jt
y

Js
x

Jt
y

Constant Propagation

16

 Jα
X

Jβ
VJβ

U

Jα
Y

The constant-propagation algorithm will
Eventually converge to above values.
(might need to iterate with global)

1 2

-13

Example

 PROGRAM MAIN
 INTEGER A,B
 A = 1
 B = 2
 α CALL S(A,B)
 END
 SUBROUTINE S(X,Y)
 INTEGER X,Y,Z,W
 Z = X + Y
 W = X - Y
 β CALL T(Z,W)
 END
 SUBROUTINE T(U,V)
 PRINT U,V
 END

17

Symbolic Analysis

• Prove facts about variables other than constancy:
• Find a symbolic expression for a variable in terms of other

variables.
• Establish a relationship between pairs of variables at some

point in program.
• Establish a range of values for a variable at a given point.

• Array section analysis

18

Program Analysis via CFL Reachability

http://research.cs.wisc.edu/wpis/papers/tr1386.pdf

3/17/12 Home Page of Prof. Thomas W. Reps

1/52pages.cs.wisc.edu/~reps/

My UW | UW Search

Computer Science Home
Page
> ~reps

Contact
 Information

Biography

Current Research

Summary of Past Research

Recent Items of Note
(Last updated: 12/19/11)

Categorized Index to
Publications

Disclaimer

List of Publications
· Books
· Journal Publications
· Invited Papers
· Book Chapters
· Reprinted in Collections
· Edited Books
· Conference Publications
· Patents
· Pending Submissions
· Magazine Articles
· Other Publications and
Reports

Software

Visitors, Post-Doctoral
Associates, and Students

C.S. Dept.
 Home Page

Thomas W. Reps
Professor
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706-1685
USA

Contact Information:

E-mail: reps at cs.wisc.edu
Telephone: (608) 262-2091
Department: (608) 262-1204
Fax: (608) 262-9777

Some Maps: Campus Map | Campus-to-Capitol Map | City Map

Ph.D., Cornell University, 1982 (CV, Biography, Current Research, Summary of Past
Research)

Research Interests:

Program slicing, differencing, and merging
Interprocedural dataflow analysis
Alias analysis, pointer analysis, and shape analysis
Analysis of multi-threaded programs

Possibly Uninitialized Variables
Start

x = 3

if . . .

y = x
y = w

w = 8

printf(y)

{w,x,y}

{w,y}

{w,y}

{w,y}

{w}

{w,y}{}

{w,y}

{}

Precise Intraprocedural Analysis

start n

C
x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

(

)
]

(

call
site 1 call

site 2

Precise Interprocedural Analysis

start n

C ret

()

[Sharir & Pnueli 81]

Representing Dataflow Functions

Identity Function

Constant Function

a b c

a b c

Representing Dataflow Functions
“Gen/Kill” Function

Non-“Gen/Kill” Function a b c

a b c
x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

x y a b

a b c

b ca

Composing Dataflow Functions
b ca

x = 3

p(x,y)

return from p

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

exit p

x y a b

printf(y)

Might b be
uninitialized
here?

printf(b) NO!

(

]

Might y be
uninitialized
here?

YES!

(

)

Exhaustive Versus Demand Analysis

• Exhaustive analysis: All facts at all points
• Optimization: Concentrate on inner loops
• Program-understanding tools: Only some facts

are of interest

What Are Slices Useful For?
• Understanding Programs

–What is affected by what?
• Restructuring Programs

–Isolation of separate “computational threads”
• Program Specialization and Reuse

–Slices = specialized programs
–Only reuse needed slices

• Program Differencing
–Compare slices to identify changes

• Testing
–What new test cases would improve coverage?
–What regression tests must be rerun after a change?

Line-Character-Count Program
void line_char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Character-Count Program
void char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Line-Character-Count Program
void line_char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Line-Count Program
void line_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line2(FILE *f, BOOL *bptr, int *iptr);
 scan_line2(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line2(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Exhaustive Versus Demand Analysis

• Demand analysis:
–Does a given fact hold at a given point?
–Which facts hold at a given point?
–At which points does a given fact hold?

• Demand analysis via CFL-reachability
–single-source/single-target CFL-reachability
–single-source/multi-target CFL-reachability
–multi-source/single-target CFL-reachability

x = 3

p(x,y)

return from p

printf(y)

start main

exit main

start p(a,b)

if . . .

b = a

p(a,b)

return from p

printf(b)

exit p

x y a b

YES!

(

)

NO!

“Semi-exhaustive”:
All “appropriate” demands

Might y be
uninitialized
here?

Might b be
uninitialized
here?

CFL-Reachability: Scope of Applicability
• Static analysis

–Slicing, DFA, structure-transmitted dep., points-
to analysis

• Verification
–Security of crypto-based protocols for distributed

systems [Dolev, Even, & Karp 83]
–Model-checking recursive HFSMs

• Formal-language theory
–CF-, 2DPDA-, 2NPDA-recognition
–Attribute-grammar analysis

CFL-Reachability: Benefits
• Algorithms

–Exhaustive & demand
• Complexity

–Linear-time and cubic-time algorithms
–PTIME-completeness
–Variants that are undecidable

• Complementary to
–Equations
–Set constraints
–Types
–. . .

