What Are Slices Useful For?

Exhaustive Versus Demand Analysis * Understanding Programs
—What is affected by what?

* Restructuring Programs

. 0 5 —Isolation of separate “computational threads”
» Exhaustive analysis: facts at '/ points 2 .

* Program Specialization and Reuse

* Optimization: Concentrate on inner loops —Slices = specialized programs
- —Only reuse needed slices
* Program-understanding tools: Only some facts « Program Differencing

are of interest —Compare slices to identify changes
* Testing
—What new test cases would improve coverage?
—What regression tests must be rerun after a change?

Line-Character-Count Program Character-Count Program

void line char count (FILE *f) ({

int lines = 0; int lines = 0;

int chars;

BOOL eof flag = FALSE;

int n;

extern void scan_line(FILE *£, BOOL *bptr, int *iptr);

scan_line(f, &eof_ flag, &n);

chars = n;

while (eof flag == FALSE) {
lines = lines + 1; lines = lines + 1;
scan_line(f, &eof flag, &n);
chars = chars + n;

}

printf (“lines

printf (“chars

$d\n”, lines) ; printf (“lines = %d\n”, lines);
%$d\n”, chars);

Line-Character-Count Program Line-Count Program

void line char count (FILE *f) ({
int lines = 0;
int chars; int chars;
BOOL eof flag = FALSE;
int n; int n;
extern void scan_line(FILE *£, BOOL *bptr, int *iptr); , int *iptr
scan_line(f, &eof_ flag, &n);
chars = n;
while (eof flag == FALSE) {
lines = lines + 1;
scan_line(f, &eof flag, &n);
chars = chars + n; chars + n;
}
printf (“lines
printf (“chars

$d\n”, lines) ;
%d\n”, chars); printf (“chars = %d\n”, chars);

CFL-Reachability: Benefits

* Algorithms
* Demand analysis: —Exhaustive & demand
» Complexity

Exhaustive Versus Demand Analysis

—Does a fact hold at a point?

facts hold at a point? —Linear-time and cubic-time algorithms
—At points does a fact hold? —PTIME-completeness

d [habili —Variants that are undecidable
-quan analysis via CFL-reachabi 1ty. « Complementary to
—single-source/single-target CFL-reachability Equati
.] - —Equations

—single-source/multi-target CFL-reachability

) . = —Set constraints
—multi-source/single-target CFL-reachability —Types

Two Styles of Analysis

Constraint Problems
in
Program Analysis

* Whole program
- Entire program needed for analysis of any piece

+ Compositional

from the sublime to the ridiculous - Can analyze partial or “open"” programs (libraries)
Alex Aiken * Intimately connected to solving complexity
Stanford University - Leads to very different engineering issues

- This is poorly understood today

37 38

Algorithms and Engineering Constraints as Graphs

* Algor‘ifhms: PTIME is QOOd enough | name rule ensures |
o . . copy O ,, °° pista) C pis(t)

* Engineering: linear space is essential

- Must also be close to linear time
- These algorithms are applied at large scales
- Linux kernel 6.2MLOC

39 40

Solutions

- Solution size is potentially O(n?)
- May be the complete graph

+ Solution time is O(n3)
- Each of O(n?) edges may be added in O(n) ways

* A major engineering issue
-1996: analyze 5 KLOC
-2002: analyze 6MLOC

* now in production compilers
41

Discussion

* 6ood techniques for cycle-elimination known
- Does not change worst-case complexity
- But makes 100X time difference

+ Specific algorithmic/implementation techniques
are critical fo the success of decision procedures
- Even "cheap” ones
- Support for such research is important

43

Correctness/Reliability/Security

- Windows 98 crashed on live TV

« http://www.youtube.com/watch?v=z6b9ToIRbgM
+ A complete failure of Navy's “"smart ship” in 1997
* ABI report 2004

- approximately 30% of all automotive warranty issues today
are software and silicon-related

* Failure rate measured by inputing random strings

GNU Utilties (1995) _]
GNU/Linux OS (1995) _:I
Proprietary Unix (1990) 7:|
Proprietary Unix (1995) |

Windows, weakened test

—
—
Wwindows [T

— T T T T
0% 20% 40% 60% 80% 100%

Optimization: Cycle Elimination

* Variables in a cycle are all equivalent
Xi U Xz U Xy 1 X

* Optimization: collapse them into one variable

42

Introduction to Software Correctness

Wheeler's Report

* Why Open Source Software / Free Software (0SS/FS, FLOSS,
or FOSS)? Look at the Numbers!
* http://www.dwheeler.com/oss fs why.html
* David A. Wheeler, 2007
* Reliability
+ under random inputs, frequency of reboots, time to fix
hardware/system faults
+ code defects per KSLOC
+ memory leaks, null pointer dereference, out of bound array
access, uninitialized variables
* maintainability
* modularity
+ cost of redesign

46

Wheeler's Report (cont'd)

* Security
- cost of “hacker insurance” for Windows vs. Unix/Linux
+ number of installations compromised
* time before compromised on Internet
* 4 minute for unpatched Windows XP
+ vulnerability database
+ faster response to advisories
* survey of developers
+ frequency of attacks, prevalence of viruses
- expert recommendations
- adoption by Homeland security e.g.

+ Other factors

+ performance, scalability, total cost of ownership, legal, social,
moral etc

47

“Windows 00
Driver
Development Kit

Drive testing F
tools

Precise
API Usage Rules
(SLIC)

New API rules

Development

Defects Software Model

Testing

100% pathy
coverag

SLAM?2 Verification Engine

SLAM 2.0 released with SDV 2.0, part of
Windows 7 WDK

Parameter for WDM
drivers

SDV 2.0 (SLAM2)

SDV 1.6 (SLAM1)

False defects 0.4% (2/512) 19.7% (31/157)

Give-up results 3.2% (187/5727) 6% (285/4692)

The Static Driver Verifier
Research Platform

Thomas Ball?, Ella Bounimova?l, Vladimir Levin?,
Rahul Kumar?, and Jakob Lichtenberg?

IMicrosoft Research
ZMicrosoft Windows

http://research.microsoft.com/slam/

API SLIC Rule

1/0 Manager state f{
Model enum {unlocked, locked} s = unlocked;
}

RunDispatchFunction.exit

{

Entry Point if (s != unlocked) abort;

}

KeAcquireSpinLock.entry

{
if (s unlocked) abort;
else s = locked;

}

Driver

KeReleaseSpinLock.entry
KeRelease {

SpinLock
Device Driver
InterfaceModel

KeAcquire
SpinLock .
if (s != locked) abort;

else s = unlocked;

SLAM Status

2000-2001
— foundations, algorithms, prototyping
— papers in CAV, PLDI, POPL, SPIN, TACAS

March 2002
— Bill Gates review

May 2002

— Windows committed to hire two people with model checking background to support
Static Driver Verifier (SLAM+driver rules)

July 2002
— running SLAM on 100+ drivers, 20+ properties

September 3, 2002
— made initial release of SDV to Windows (friends and family)

April 1, 2003
— made wide release of SDV to Windows (any internal driver developer)

Type-State Analysis in MSR SLAM Tool

Example
Does this code
obey the
locking rule?
do {
KeAcquireSpinLock () ;

nPacketsOld = nPackets;

if (request) {
request = request->Next;

KeReleaseSpinLock() ;
nPackets++;
}
} while (nPackets != nPackets01ld);
KeReleaseSpinLock() ;

Is error path feasible
in C program?
(newton)

do {
KeAcquireSpinLock () ;

nPacketsOld = nPackets;

o if (request) {
request = request->Next;
o KeReleaseSpinLock() ;
nPackets++;
W
C&} while (nPackets != nPacketsO0ld);
/ KeReleaseSpinLock() ;

0
O
W

State Machine for

Locking Rule in

Locking SLIC

state {
enum {Locked,Unlocked}

Rel s = Unlocked;
}
Acq
@ @ KeAcquireSpinLock.entry {
if (s==Locked) abort;

Rel \ /Acq else s = Locked;
G |

KeReleaseSpinLock.entry {
if (s==Unlocked) abort;
else s = Unlocked;

Example
Model checking
boolean program
(bebop)
W s
KeAcquireSpinLock () ;
W
o 1E(*){
o KeReleaseSpinLock () ;

W

} while (*);

KeReleaseSpinLock () ;

c2bp: Predicate Abstraction for

C Programs
Given
* P:a C program
« F={eq....e}

—each g;a pure boolean expression
—each e;represents set of states for which g, is true

Produce a boolean program B(P,F)

« same control-flow structure as P

« boolean vars {b,,...,b,} to match {e,,....e,.}
« properties true of B(P,F) are true of P

Example

Add new predicate
to boolean program
(c2bp)

b : (nPacketsOld == nPacke\Ts)J

do {
KeAcquireSpinLock () ;

nPacketsOld = nPackets; b = true;

o if (request) {
request = request->Next;
KeReleaseSpinLock() ;
nPackets++; b = b ? false : *;

} whlle (nPackets !'= nPacketsO01ld); 'b
/

KeReleaseSpinLock() ;

0
O
W

Bebop

* Model checker for boolean programs

» Based on CFL reachability
—[Sharir-Pnueli 81] [Reps-Sagiv-Horwitz 95]

* Iterative addition of edges to graph
—“path edges”: <entry,d1> — <v,d2>
—“summary edges”: <call,d1> — <ret,d2>

Symbolic CFL reachability

Partition path edges by their “target”
= PE(v) ={<d1,d2> | <entry,d1> — <v,d2>}

What is <d1,d2> for boolean programs?
= A bit-vector!

What is PE(v)?
= A set of bit-vectors

Use a BDD (attached to v) to represent PE(v)

Example

Model checking

refined
b : (nPacketsOld == nPackets) boolean program
(bebop)

do {
KeAcquireSpinLock () ;

b = true;
if (*){
KeReleaseSpinLock() ;
b =Db ? false : *;
}
} while ('b);

KeReleaseSpinLock() ;

CFL-Reachability

[Yannakakis 90]

* G: Graph (N nodes, E edges)
* L: A context-free language

» L-path from s to ¢iff (_agm™,
* Running time: O(N ?)

Example

Model checking

refined
b : (nPacketsOld == nPackets) boolean program
(bebop)

do {
KeAcquireSpinLock () ;

b = true;
if (%) {

KeReleaseSpinLock () ;
b =Db ? false : *;
}
} while ('b);

KeReleaseSpinLock () ;

Observations about SLAM Scaling SLAM

+ Automatic discovery of invariants » Largest driver we have processed has ~60K lines of
— driven by property and a finite set of (false) execution paths code
— predicates are not invariants, but observations

— abstraction + model checking computes inductive invariants .
(boolean combinations of observations) - Largest abstractions we have analyzed have

several hundred boolean variables

* A hybrid dynamic/static analysis
— newton executes path through C code symbolically . . .

— c2bp+bebop explore all paths through abstraction * Routinely get results after 20-30 iterations
* A new form of program slicing * Out of 672 runs we do daily, 607 terminate within 20

— program code and data not relevant to property are dropped minutes
— non-determinism allows slices to have more behaviors

What is hard? What worked well?
- Abstracting * Specific doma!n problem
. . » Safety properties
—from a language with pointers (C) . Shoulders & synergies
—to one without pointers (boolean programs) . Separation of concerns

* Summer interns & visitors
e All side effects need to be modeled by — Sagar Chaki, Todd Millstein, Rupak Majumdar (2000)
. . — Satyaki Das, Wes Weimer, Robby (2001)
copying (as in dataflow) — Jakob Lichtenberg, Mayur Naik (2002)
— Giorgio Delzanno, Andreas Podelski, Stefan Schwoon

. * Windows Partners
* Open enVIronment prOblem — Byron Cook, Vladimir Levin, Abdullah Ustuner

Future Work

» Concurrency
— SLAM analyzes drivers one thread at a time
— Work in progress to analyze interleavings between threads

* Rules and environment-models
— Large scale development or rules and environment-models is a
challenge
— How can we simplify and manage development of rules?
Modeling C semantics faithfully
* Theory:
— Prove that SLAM will make progress on any property and any
program

— Identify classes of programs and properties on which SLAM will
terminate

