
Exhaustive Versus Demand Analysis

• Exhaustive analysis: All facts at all points
• Optimization: Concentrate on inner loops
• Program-understanding tools: Only some facts

are of interest

What Are Slices Useful For?
• Understanding Programs

–What is affected by what?
• Restructuring Programs

–Isolation of separate “computational threads”
• Program Specialization and Reuse

–Slices = specialized programs
–Only reuse needed slices

• Program Differencing
–Compare slices to identify changes

• Testing
–What new test cases would improve coverage?
–What regression tests must be rerun after a change?

Line-Character-Count Program
void line_char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Character-Count Program
void char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Line-Character-Count Program
void line_char_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line(FILE *f, BOOL *bptr, int *iptr);
 scan_line(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Line-Count Program
void line_count(FILE *f) {
 int lines = 0;
 int chars;
 BOOL eof_flag = FALSE;
 int n;
 extern void scan_line2(FILE *f, BOOL *bptr, int *iptr);
 scan_line2(f, &eof_flag, &n);
 chars = n;
 while(eof_flag == FALSE){
 lines = lines + 1;
 scan_line2(f, &eof_flag, &n);
 chars = chars + n;
 }
 printf(“lines = %d\n”, lines);
 printf(“chars = %d\n”, chars);
}

Exhaustive Versus Demand Analysis

• Demand analysis:
–Does a given fact hold at a given point?
–Which facts hold at a given point?
–At which points does a given fact hold?

• Demand analysis via CFL-reachability
–single-source/single-target CFL-reachability
–single-source/multi-target CFL-reachability
–multi-source/single-target CFL-reachability

CFL-Reachability: Benefits
• Algorithms

–Exhaustive & demand
• Complexity

–Linear-time and cubic-time algorithms
–PTIME-completeness
–Variants that are undecidable

• Complementary to
–Equations
–Set constraints
–Types
–. . .

37

Constraint Problems
in

Program Analysis

from the sublime to the ridiculous

Alex Aiken
Stanford University

Two Styles of Analysis

• Whole program
– Entire program needed for analysis of any piece

• Compositional
– Can analyze partial or “open” programs (libraries)

• Intimately connected to solving complexity
– Leads to very different engineering issues
– This is poorly understood today

38

Algorithms and Engineering

• Algorithms: PTIME is good enough

• Engineering: linear space is essential
– Must also be close to linear time
– These algorithms are applied at large scales
– Linux kernel 6.2MLOC

39 40

Constraints as Graphs

X Y
Constraints:
c(a,b) X

name rule ensures

copy

Solutions

• Solution size is potentially O(n2)
– May be the complete graph

• Solution time is O(n3)
– Each of O(n2) edges may be added in O(n) ways

• A major engineering issue
– 1996: analyze 5 KLOC
– 2002: analyze 6MLOC

• now in production compilers
41 42

Optimization: Cycle Elimination

• Variables in a cycle are all equivalent
X1 µ X2 … µ Xn µ X1

• Optimization: collapse them into one variable

…

S S

S S

S

Discussion

• Good techniques for cycle-elimination known
– Does not change worst-case complexity
– But makes 100X time difference

• Specific algorithmic/implementation techniques
are critical to the success of decision procedures
– Even “cheap” ones
– Support for such research is important

43

CSC 255/455
Software Analysis and Improvement

Introduction to Software Correctness

Instructor: Chen Ding

Correctness/Reliability/Security

• Windows 98 crashed on live TV
• http://www.youtube.com/watch?v=z6b9ToIRbgM

• A complete failure of Navy’s “smart ship” in 1997
• ABI report 2004

• approximately 30% of all automotive warranty issues today
are software and silicon-related

• Failure rate measured by inputing random strings

45

Wheeler’s Report

• Why Open Source Software / Free Software (OSS/FS, FLOSS,
or FOSS)? Look at the Numbers!
• http://www.dwheeler.com/oss_fs_why.html
• David A. Wheeler, 2007

• Reliability
• under random inputs, frequency of reboots, time to fix

hardware/system faults
• code defects per KSLOC

• memory leaks, null pointer dereference, out of bound array
access, uninitialized variables

• maintainability
• modularity

• cost of redesign

46

Wheeler’s Report (cont’d)

• Security
• cost of “hacker insurance” for Windows vs. Unix/Linux
• number of installations compromised
• time before compromised on Internet

• 4 minute for unpatched Windows XP
• vulnerability database
• faster response to advisories
• survey of developers
• frequency of attacks, prevalence of viruses
• expert recommendations

• adoption by Homeland security e.g.
• Other factors

• performance, scalability, total cost of ownership, legal, social,
moral etc

47

!"#$%&'&()$*+(,#+$-#+(.(#+$
/#0#'+)"$12'&.3+4$

!"34'0$5'2267$822'$539:(43,'67$-2';(4(+$<#,(:=7$
/'"92$>94'+=7$':;$?'@3A$<()"&#:A#+B=$

6C()+303.&$/#0#'+)"$$
=C()+303.&$D(:;3E0$

$$$
!""#$%%&'(')&*!+,-*&.(./"+*.,%(0),%11

$

Source Code

Testing
Development

Precise
API Usage Rules

(SLIC)

Software Model
 Checking

Read for
understanding

New API rules

Drive testing
tools

Defects

100% path
coverage

Rules

Static Driver Verifier

!"#$%&#'$()*+$

!"#$%"&!'$#"'&
()*"'+,%"-./"0!

$
$

"#$%&'()#!
*+(,-.%/!

"#0#1#23#!
*+(,-.%/!

$
$

!'$#"'!

$
$

1)*'2&3.$)*&

&&&&&&&&(45&-,),6"'&&
-./"0&

!"#"$!"!
!!$%&'!"#$%&'()*+!%&'()*,!-!.!#$%&'()*/!
,!

0#$12-345'67#$'52&8()"!
"!
!!)*!9-!:.!#$%&'()*;!#+,-"/!
,!
$<)='>#2?)@32$A&'(8$%"-.!
"!!!
!!)*!9-!:.!#$%&'()*;!#+,-"/!
!!$/!$!-!.!%&'()*/!
,!
$!<)0)%)4-)@32$A&'(8$%"-.!

"!
!!)*!9-!:.!%&'()*;!#+,-"/!
!!$/!$!-!.!#$%&'()*/!
,!
$

!"#$%&'()*+*,-.*/0&102*0(&

!"#$&%34&)(5(-6(7&8*.9&!:'&%34;&<-).&/+&
=*07/86&>&=:?&&

&
&
&
!"#"$%&%#'()#'*+,'
-#./%#0'

1+2'345'6178,39' 1+2':4;'6178,:9'

@-56(&7(+(,.6&& 43AB&C%DEF%G& FH3>B&CIFDFE>G&
&

J*K(LM<&)(6M5.6& I3%B&CFN>DE>%>G& OB&C%NEDAOH%G&

SLAM Status
• 2000-2001

– foundations, algorithms, prototyping
– papers in CAV, PLDI, POPL, SPIN, TACAS

• March 2002
– Bill Gates review

• May 2002
– Windows committed to hire two people with model checking background to support

Static Driver Verifier (SLAM+driver rules)

• July 2002
– running SLAM on 100+ drivers, 20+ properties

• September 3, 2002
– made initial release of SDV to Windows (friends and family)

• April 1, 2003
– made wide release of SDV to Windows (any internal driver developer)

Type-State Analysis in MSR SLAM Tool

State Machine for
Locking

Unlocked Locked

Error

Rel Acq

Acq

Rel

state {
 enum {Locked,Unlocked}
 s = Unlocked;
}

KeAcquireSpinLock.entry {
 if (s==Locked) abort;
 else s = Locked;
}

KeReleaseSpinLock.entry {
 if (s==Unlocked) abort;
 else s = Unlocked;
}

Locking Rule in
SLIC

do {
 KeAcquireSpinLock();

 nPacketsOld = nPackets;

 if(request){
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++;
 }
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Does this code

obey the
locking rule?

do {
 KeAcquireSpinLock();

 if(*){

 KeReleaseSpinLock();

 }
} while (*);

KeReleaseSpinLock();

Example
Model checking

boolean program
(bebop)

U

L

L

L

L

U

L

U

U

U

E

do {
 KeAcquireSpinLock();

 nPacketsOld = nPackets;

 if(request){
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++;
 }
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Is error path feasible

in C program?
(newton)

U

L

L

L

L

U

L

U

U

U

E

c2bp: Predicate Abstraction for
C Programs

Given
• P : a C program
• F = {e1,...,en}

–each ei a pure boolean expression
–each ei represents set of states for which ei is true

Produce a boolean program B(P,F)
• same control-flow structure as P
• boolean vars {b1,...,bn} to match {e1,...,en}
• properties true of B(P,F) are true of P

do {
 KeAcquireSpinLock();

 nPacketsOld = nPackets; b = true;

 if(request){
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++; b = b ? false : *;

 }
} while (nPackets != nPacketsOld); !b

KeReleaseSpinLock();

Example
Add new predicate
to boolean program

(c2bp)b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

do {
 KeAcquireSpinLock();

 b = true;

 if(*){

 KeReleaseSpinLock();
 b = b ? false : *;

 }
} while (!b);

KeReleaseSpinLock();

b

b

b

b

Example
Model checking

refined
 boolean program

(bebop)
b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

!b

Bebop

• Model checker for boolean programs

• Based on CFL reachability
–[Sharir-Pnueli 81] [Reps-Sagiv-Horwitz 95]

• Iterative addition of edges to graph
–“path edges”: <entry,d1> → <v,d2>
–“summary edges”: <call,d1> → <ret,d2>

CFL-Reachability
[Yannakakis 90]

•G: Graph (N nodes, E edges)
• L: A context-free language
• L-path from s to t iff
• Running time: O(N 3)

Symbolic CFL reachability
 Partition path edges by their “target”
 PE(v) = { <d1,d2> | <entry,d1> → <v,d2> }

 What is <d1,d2> for boolean programs?
 A bit-vector!

 What is PE(v)?
 A set of bit-vectors

 Use a BDD (attached to v) to represent PE(v)

Example

do {
 KeAcquireSpinLock();

 b = true;

 if(*){

 KeReleaseSpinLock();
 b = b ? false : *;

 }
} while (!b);

KeReleaseSpinLock();

b : (nPacketsOld == nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

Model checking
refined

 boolean program
(bebop)

Observations about SLAM
• Automatic discovery of invariants

– driven by property and a finite set of (false) execution paths
– predicates are not invariants, but observations
– abstraction + model checking computes inductive invariants

(boolean combinations of observations)

• A hybrid dynamic/static analysis
– newton executes path through C code symbolically
– c2bp+bebop explore all paths through abstraction

• A new form of program slicing
– program code and data not relevant to property are dropped
– non-determinism allows slices to have more behaviors

Scaling SLAM
• Largest driver we have processed has ~60K lines of

code

• Largest abstractions we have analyzed have
several hundred boolean variables

• Routinely get results after 20-30 iterations

• Out of 672 runs we do daily, 607 terminate within 20
minutes

What is hard?

• Abstracting
–from a language with pointers (C)
–to one without pointers (boolean programs)

• All side effects need to be modeled by
copying (as in dataflow)

• Open environment problem

What worked well?
• Specific domain problem
• Safety properties
• Shoulders & synergies
• Separation of concerns
• Summer interns & visitors

– Sagar Chaki, Todd Millstein, Rupak Majumdar (2000)
– Satyaki Das, Wes Weimer, Robby (2001)
– Jakob Lichtenberg, Mayur Naik (2002)
– Giorgio Delzanno, Andreas Podelski, Stefan Schwoon

• Windows Partners
– Byron Cook, Vladimir Levin, Abdullah Ustuner

Future Work
• Concurrency

– SLAM analyzes drivers one thread at a time
– Work in progress to analyze interleavings between threads

• Rules and environment-models
– Large scale development or rules and environment-models is a

challenge
– How can we simplify and manage development of rules?

• Modeling C semantics faithfully
• Theory:

– Prove that SLAM will make progress on any property and any
program

– Identify classes of programs and properties on which SLAM will
terminate

