Optimizing Compilers for Modern Architectures

Early History of Computer Architecture

+ 1963 IBM 7094, 1 MIPS
+ 1964 CDC 6600, 9 Mflops
- 1968

+ CDC 7600, 40 Mflops
+ Intel founded
* Rand proposed ARPA net

+ 1971 IBM 360/195, cache memory

Chen Din,
Ding - 1975 Cray I, 133 Mflops
- 1992 DEC Alpha
+ Techniques used
CS255/455 Advanced Programming Systems : pipel.ining, lookahead, SIMD
Spring 2014 + multi-bank memory, cache
Chapter 1, Optimizing Compilers for Modern Architectures, Allen and Kennedy 2
1K x 1K Matrix Multiply Case study
* Machine and compiler (tested around 2003) - Matrix multiply

SGI, MIPS R12K 250MHz, MIPSpro compiler

+ Intel, Intel Pentium4 26Hz, GCC compiler
+ IBM, Power4 1GHz, Xlc compiler
+ Sun, Ultra5 360MHz, Sun compiler

+ C(J I)=C(J I)+A(J K*B(K.I)

- For pieplines

+ unroll J loop by 4

- For a vector machine

Intel IBM Sun el - unroll J loop by 64
2GHz IGHz 360MHz 250MHz * On Sun Starfire
+ parallel do for I loop
no opt + On Intel Paragon

+ parallelize J loop
+ On Cray T90, 32 vector processors

loop opt - vectorize J and parallelize T

scalar opt

Lessons learned Summary

* Uniprocessor performance

+ key challenge
+ sustaining the instruction and data supply

another * hardware solution
. « pipelining, lookahead, vector, VLIW, GPU
+ All parallel forms can be derived from initial sequential source by - memory hierarchy

relatively simple transformations - software challenge
+ Increasing lifetime of software and decreasing lifetime of + automatic optimization
hardware, program optimization should be best left to the + Synchronous parallelism
compiler. + eg. A[lin] = A[L:n] + B[1:n]
+ read all values before computing on them
+ Automatic vectorization next week (the Allen-Kennedy algorithm)

+ Explicit representation of parallelism in a source language is not
sufficient. Whenever the program is tailored to a specific
architecture, it loses efficiency when ported from one machine to

