
CSC 255/455

Dependence Theory and High-level Program
Transformations

Instructor: Chen Ding

Spring 2014

1K x 1K Matrix Multiply

• Machine and compiler (tested around 2003)
• SGI, MIPS R12K 250MHz, MIPSpro compiler
• Intel, Intel Pentium4 2GHz, GCC compiler
• IBM, Power4 1GHz, Xlc compiler
• Sun, Ultra5 360MHz, Sun compiler

2

Intel
2GHz

IBM
1GHz

Sun
360MHz

SGI
250MHz

no opt 57s 51s 394s 261s

scalar opt 13.4s 27s 277s 95s

loop opt 13.4s 3s 277s 6s

Dependence Theory and Practice

What we will cover
• Introduction to Dependences
• Loop-carried and Loop-independent Dependences
• Allen-Kennedy vectorization algorithm
• Loop-nest transformations

3

Dependences

• We will concentrate on data dependences
• Chapter 7 deals with control dependences

• Simple example of data dependence:
 S1 PI = 3.14
 S2 R = 5.0
 S3 AREA = PI * R ** 2

• Statement S3 cannot be moved before either S1 or S2
without compromising correct results

4

Load Store Classification

• Quick review of dependences classified in terms of load-store
order:

1. True dependences (RAW hazard)
• S2 depends on S1 is denoted by S1 δ S2

2. Antidependence (WAR hazard)
• S2 depends on S1 is denoted by S1 δ-1 S2

3. Output dependence (WAW hazard)
• S2 depends on S1 is denoted by S1 δ0 S2

5

Dependences

• Formally:
There is a data dependence from statement S1 to statement S2

(S2 depends on S1) if:
1. Both statements access the same memory location
2. At least one of them stores onto it, and
3. There is a feasible run-time execution path from S1 to S2

6

The Big Picture

What are our goals?
• Simple Goal: Make execution time as short as possible

Which leads to:
• Achieve execution of many (all, in the best case) instructions in

parallel
• Find independent instructions

7

Dependence is
Needed in

Parallel
Programming

http://www.fincher.org/images/2008-04-30-Parallel.jpg http://www.admin.technion.ac.il/pard/archives/Researchers/ParallelComputing.jpg

DO I = 1, 100
S1 X(I) = Y(I) + 10

 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)

 ENDDO
ENDDO

DO I = 1, 100
 DO J = 1, 100
 B(J) = A(J,N)
 A(J+1,1:100)=B(J)+C(J,1:100)
 ENDDO
 Y(I+1:I+100) = A(2:101,N)
ENDDO

X(1:100) = Y(1:100) + 10

Can You Parallelize This?

9

Dependence in Loops

• Let us look at two different loops:

 DO I = 2, N-1
S1 A(I+1) = A(I) + B(I)
 ENDDO

 DO I = 2, N-1
S1 A(I-1) = A(I) + B(I)
 ENDDO

• In both cases, statement S1 depends on itself

• One can be vectorized (which one?). The other cannot.

• We need a formalism to describe and distinguish such
dependences

10

A Digression: Thesis Writing

• Worry about finding a job or getting a research grant
• the wrong way to think about it
• the right way to think about it

• Rhetoric by Aristotle [McCroskey, 1978]
• attention and good will
• factual info
• summary of main points
• constructive
• rebuttal
• conclusion
• or in Greek (or Latin?)

• exordium, narratio, divisio, confirmatio, confutatio, conclusio

11

"it usually starts by precisely defining a
subject matter and says which question
he is about to answer, then he looks at
earlier answers, untangles them, and
weighs up objections, he draws
d i s t i n c t i o n s t o t r y t o u n s t i t c h
ambiguouties and confusions, gives his
verdict on what problems remain to be
solved, argue for an answer of his own,
says where its limitations lie and relates
to his accounts to other topics, and
recap."

 Dream of Reason, Anthony Gottleb

What is Philosophy?

13

• Pythagoras “Lovers of knowledge”
• “Being a systematic spirit without a system”
• To find answer in the basic questions about the world and

ourselves in the world.
• Philosophical questions cannot be answered by scientific

methods and experimental verification.
• It is what philosophers do. It is something you have to do it to

understand it.

A Writing Program

14

• Write K chapters each on an important subject
• Write clearly and convincingly for each chapter
• Structure of the program

• loop 1: write chapters, 1 to k
• loop 2: write sections, intro, body, trans

• How many ways can you write a nested loop?

k = 3
k.each do |chap|
 ["intro", "body", "trans"].each do |sec|
 puts "write section "+ sec + " of chapter "+chap.to_s
 end
end

k = 3
for (chap in 1:k)
 for (sec in c("intro", "body", "trans"))
 print(sprintf("write section %d of chapter %s\n", sec, chap))

• Which syntax do you like more?
• Can we write in a different order?

• later chapters may depend on the first
• intro/trans of next chapter depends on trans of previous

• The problem is first representation
• representing iterations and their ordering constraints

Representing Iterations

• Iteration Space: The set of all possible iteration vectors for a
statement

Example:
DO I = 1, 2
 DO J = 1, 2
S1 <some statement>
 ENDDO
ENDDO

• The iteration space for S1 is { (1,1), (1,2), (2,1), (2,2) }

16

Formal Definition of Loop Dependence

• Theorem 2.1 Loop Dependence:
There exists a dependence from statements S1 to statement S2
in a common nest of loops if and only if there exist two iteration
vectors i and j for the nest, such that
(1) i < j or i = j and there is a path from S1 to S2 in the body of
the loop,
(2) statement S1 accesses memory location M on iteration i and
statement S2 accesses location M on iteration j, and
(3) one of these accesses is a write.

• Follows from the definition of dependence

17

Transformations

• We call a transformation safe if the transformed program has
the same "meaning" as the original program

• But, what is the "meaning" of a program?

For our purposes:
• Two computations are equivalent if, on the same inputs:

• They produce the same outputs in the same order

18

Reordering Transformations

• A reordering transformation is any program transformation that
merely changes the order of execution of the code, without
adding or deleting any executions of any statements

19

Properties of Reordering Transformations

• A reordering transformation does not eliminate dependences
• However, it can change the ordering of the dependence which will

lead to incorrect behavior
• A reordering transformation preserves a dependence if it

preserves the relative execution order of the source and sink of
that dependence.

20

Fundamental Theorem of Dependence

• Fundamental Theorem of Dependence:
• Any reordering transformation that preserves every

dependence in a program preserves the meaning of that
program

• Proof by contradiction. Theorem 2.2 in the book.

21

Transformations

• We call a transformation safe if the transformed program has
the same "meaning" as the original program

• But, what is the "meaning" of a program?

For our purposes:
• Two computations are equivalent if, on the same inputs:

• They produce the same outputs in the same order

22

Reordering Transformations

• A reordering transformation is any program transformation that
merely changes the order of execution of the code, without
adding or deleting any executions of any statements

23

Properties of Reordering Transformations

• A reordering transformation does not eliminate dependences
• However, it can change the ordering of the dependence which will

lead to incorrect behavior
• A reordering transformation preserves a dependence if it

preserves the relative execution order of the source and sink of
that dependence.

24

Fundamental Theorem of Dependence

• Fundamental Theorem of Dependence:
• Any reordering transformation that preserves every

dependence in a program preserves the meaning of that
program

• Proof by contradiction. Theorem 2.2 in the book.

25

Distance and Direction Vectors

• Consider a dependence in a loop nest of n loops
• Statement S1 on iteration i is the source of the dependence
• Statement S2 on iteration j is the sink of the dependence

• The distance vector is a vector of length n d(i,j) such that: d(i,j)k
= jk - ik

• We shall normalize distance vectors for loops in which the index
step size is not equal to 1.

26

Direction Vectors

• Definition 2.10 in the book:
 Suppose that there is a dependence from statement S1 on

iteration i of a loop nest of n loops and statement S2 on iteration
j, then the dependence direction vector is D(i,j) is defined as a
vector of length n such that

 “<” if d(i,j)k > 0

D(i,j)k = “=” if d(i,j)k = 0

 “>” if d(i,j)k < 0

27 http://www.sciencesoftware.com/ProductImagesA/WebVectorPlot.png

Direction Vectors

Example:
DO I = 1, N
 DO J = 1, M
 DO K = 1, L
S1 A(I+1, J, K-1) = A(I, J, K) + 10
 ENDDO
 ENDDO
ENDDO

• S1 has a true dependence on itself.
• Distance Vector: (1, 0, -1)
• Direction Vector: (<, =, >)

28

Direction Vectors
• A dependence cannot exist if it has a direction vector whose

leftmost non "=" component is not "<" as this would imply
that the sink of the dependence occurs before the source.

29

k = 3
k.each do |chap|
 ["intro", "body", "trans"].each do |sec|
 puts "write section "+ sec + " of chapter "+chap.to_s
 end
end

k = 3
for (chap in 1:k)
 for (sec in c("intro", "body", "trans"))
 print(sprintf("write section %d of chapter %s\n", sec, chap))

• What are the distance/direction vectors?
• later chapters may depend on the first
• trans of the next depends on trans of the previous
• intro of the next depends on trans of the previous
• trans of a chapter depends on its intro

Loop-carried and Loop-independent
Dependences

• If in a loop statement S2 depends on S1, then there are two
possible ways of this dependence occurring:

1. S1 and S2 execute on different iterations
• This is called a loop-carried dependence.

2. S1 and S2 execute on the same iteration
• This is called a loop-independent dependence.

• Loop-independent and loop-carried dependence partition all
possible data dependences!

31

Loop-carried dependence

• Definition 2.11
•Statement S2 has a loop-carried dependence on

statement S1 if and only if D(i,j) contains a “<” as leftmost
non “=” component.

• Level of a loop-carried dependence is the index of the
leftmost non-“=” of D(i,j) for the dependence.

Example:
DO I = 1, N
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)
ENDDO

32

• Dependence and direction vector?
• Dependence level?

Loop-carried dependence

Another example:
DO I = 1, 10
 DO J = 1, 10
 DO K = 1, 10
S1 A(I, J, K+1) = A(I, J, K)
 ENDDO
 ENDDO
ENDDO

• Dependence and direction vector?
• Dependence level?
• A level-k dependence between S1 and S2 is denoted by

S1 δk S2

33

Loop-carried Transformations

• Theorem 2.4 Any reordering transformation that does not
alter the relative order of any loops in the nest and
preserves the iteration order of the level-k loop preserves
all level-k dependences.

• Proof:
• D(i, j) has a “<” in the kth position and “=” in positions 1

through k-1
⇒ Source and sink of dependence are in the same

iteration of loops 1 through k-1
⇒ Cannot change the sense of the dependence by a

reordering of iterations of those loops

34

Statement Reordering

Example:
 DO I = 1, 10
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)
 ENDDO

can it be transformed to?

 DO I = 1, 10
S2 F(I+1) = A(I)
S1 A(I+1) = F(I)
 ENDDO

35

Loop-independent dependences

• Definition 2.14. Statement S2 has a loop-independent
dependence on statement S1 if and only if D(i,j) contains only “=”
components.

Example:
DO I = 1, 10
S1 A(I) = ...
S2 ... = A(I)
ENDDO

36

Loop-independent dependences

More complicated example:
DO I = 1, 9
S1 A(I) = ...
S2 ... = A(10-I)
ENDDO

• No common loop is necessary. For instance:
DO I = 1, 10
S1 A(I) = ...
ENDDO
DO I = 1, 10
S2 ... = A(20-I)
ENDDO

37

Loop-independent dependences

• Theorem 2.5. If there is a loop-independent dependence from S1
to S2, any reordering transformation that does not move
statement instances between iterations and preserves the
relative order of S1 and S2 in the loop body preserves that
dependence.

• S2 depends on S1 with a loop independent dependence is denoted
by S1 δ∞ S2

38

Review Questions

• What is data dependence?
• What is the fundamental theorem

of dependence?
• Why is it useful?

• How to represent iterations in a
loop nest?

• How to represent loop dependences
between iterations?

39

