
Allen-Kennedy Vectorization Algorithm

Control Data Corporation
Formed by several defecting Minneapolis-based Sperry Univac managers and
engineers in 1957

 -Co-founder of ERA William Norris, co-founded CDC and was unanimous

 choice as CEO and ran the firm for 3 decades

 -Sperry Univac’s Seymour Cray became CDC’s chief design engineer

William Norris Seymour Cray

CDC Revenue

1962
$41M
1967
$245M
1969
$1.02B
1972
$1.2B
1977
$2.3B
1982
$3.2B

Late 1960s and 1970s CDC #2 (to IBM) in the Computer
Industry (CDC is 1st in Supercomputing)

March 6,
1963

Control Data
Corporation
listed on the
NYSE

Cray Research
Seymour Cray leaves CDC in 1972 to form Cray Research, Inc. (HQ Minneapolis)
Cray Research displaces CDC as supercomputer leader

Cray Research takes over the lead in supercomputing with Cray I (1976), and
furthers its lead with Cray X-MP (1983) and Cray II (1985) supercomputers.

Cray I
Cray II

Cray Research founder and
CEO Seymour Cray

Arguably the Highest Compiler Success

• David Cook’s group pioneered dependence-based program
parallelization

• Ken Kennedy’s group developed the algorithm we know today
• Allen/Kennedy paper, one of the most cited in literature
• The Rice compiler

• renowned for developing techniques that work
• vectorization, interprocedural analysis, parallelization, locality

improvements
• The algorithm ushered in the supercomputing era, according

to Steve Wallach
• Recent uses

• deadlock-free locking in concurrent code
• a Rochester paper by Mehdi Manshadi

52

Vectorization

• Theorem 2.8. It is valid to convert a sequential loop to a
parallel loop if the loop carries no dependence.

• Want to convert loops like:
DO I=1,N
 X(I) = X(I) + C
ENDDO

• to X(1:N) = X(1:N) + C (Fortran 77 to Fortran 90)

• What about converting:
DO I=1,N
 X(I+1) = X(I) + C
ENDDO

 to X(2:N+1) = X(1:N) + C ?

53

Loop Distribution

• Can statements in loops which carry dependences be
vectorized?
 D0 I = 1, N

S1 A(I+1) = B(I) + C
S2 D(I) = A(I) + E

 ENDDO

• Can it be converted to?

S1 A(2:N+1) = B(1:N) + C
S2 D(1:N) = A(1:N) + E

54

Loop Distribution
DO I = 1, N

S1 A(I+1) = B(I) + C
S2 D(I) = A(I) + E

 ENDDO

• transformed to:
DO I = 1, N

S1 A(I+1) = B(I) + C
ENDDO
DO I = 1, N

S2 D(I) = A(I) + E
ENDDO

• leads to:
S1 A(2:N+1) = B(1:N) + C
S2 D(1:N) = A(1:N) + E

55

Loop Distribution

• Does loop distribution always work?

DO I = 1, N
S1 A(I-1) = B(I) + C
S2 B(I-1) = A(I) + E

ENDDO
S1 δ1 S2 and S2 δ1 S1

• What about:
DO I = 1, N

S1 B(I) = A(I) + E
S2 A(I+1) = B(I) + C

ENDDO

56

Advanced Vectorization Algorithm

procedure codegen (L, k, D)
// L is the maximal loop nest containing the statement.
// k is the current loop level
// D is the dependence graph for statements in L.
find the set {S1, S2, ... , Sm} of SCCs in D
construct Lp from L by reducing each Si to a single node
use topological sort to order nodes in Lp to {p1, p2, ... , pm}

for i = 1 to m do begin
 if pi is a dependence cycle then

generate a level-k DO
construct Di be pi dependence edges in D at level k+1 or greater
codegen (pi, k+1, Di)

generate the level-k ENDDO
 else
 vectorize pi with respect to every loop containing it
 end
end vectorize

57

A Simple Example

 DO I = 1, N
 DO J = 1, M
S1 A(I+1,J) = A(I,J) + B
 ENDDO
 ENDDO

• Dependence graph?
• Dependence level?
• Vectorization process?

58

Advanced Vectorization Algorithm

DO I = 1, 100
S1 X(I) = Y(I) + 10

 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)

 ENDDO
ENDDO

59

Advanced Vectorization Algorithm

DO I = 1, 100
S1 X(I) = Y(I) + 10

 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)

 ENDDO
ENDDO

60

DO I = 1, 100
S1 X(I) = Y(I) + 10

 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)

 ENDDO
ENDDO

DO I = 1, 100
S1 X(I) = Y(I) + 10

 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)

 ENDDO
ENDDO

DO I = 1, 100
S1 X(I) = Y(I) + 10

 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)

 ENDDO
ENDDO

procedure vectorize (L, k, D)

// L is the maximal loop nest containing the statement.
// k is the current loop level
// D is the dependence graph for statements in L.
find the set {S1, S2, ... , Sm} of SCCs in D

construct Lp from L by reducing each Si to a single node

use topological sort to order nodes in Lp to {p1, p2, ... , pm}

for i = 1 to m do begin

 if pi is a dependence cycle then

generate a level-k DO

construct Di be pi dependence edges in D at level k+1 or greater

codegen (pi, k+1, Di)

generate the level-k ENDDO

 else

 vectorize pi with respect to every loop containing it

 end
end vectorize

DO I = 1, 100
 DO J = 1, 100
 B(J) = A(J,N)
 A(J+1,1:100)=B(J)+C(J,1:100)
 ENDDO
 Y(I+1:I+100) = A(2:101,N)
ENDDO

X(1:100) = Y(1:100) + 10

Lock Allocation

• Composition of concurrent code
• fine-grained locking

• deadlock
• eg. thread 1 acquires A and then B and thread 2 acquires B

and then A
• solved by requiring same order

• what if they cannot
• Lock dependence

• if B depends on A, then A must be acquired first
• take the dependence graph, compute SCC
• locks involved in SCC are coarsened into a single lock
• the order is the topological sort

64

Review Questions

• What is vectorization?
• Does vectorization implies loop distribution?

• What are the steps of the Allen-Kennedy algorithm?
• Why is topological sort needed? What happens if the

dependence graph is cyclic?
• After a level-k loop is serialized, how the algorithm update

the dependence graph and why?
• Does the algorithm always vectorize a loop nest one level at a

time? (hint: not always)
• How to allocate locks in concurrent code to prevent deadlock?

65

