
CSC 255/455 Software Analysis and
Improvement

Enhancing Parallelism

Instructor: Chen Ding

Chapter 5, Optimizing Compilers for Modern Architectures, Allen and Kennedy
www.cs.rice.edu/~ken/comp515/lectures/

Where Does Vectorization Fail?
procedure vectorize (L, k, D)
// L is the maximal loop nest containing the statement.
// k is the current loop level
// D is the dependence graph for statements in L.
find the set {S1, S2, ... , Sm} of SCCs in D
construct Lp from L by reducing each Si to a single node
use topological sort to order nodes in Lp to {p1, p2, ... , pm}

for i = 1 to m do begin
 if pi is a dependence cycle then

generate a level-k DO
construct Di be pi dependence edges in D at level k+1 or greater
codegen (pi, k+1, Di)
generate the level-k ENDDO

 else
 vectorize pi with respect to every loop containing it
 end
end vectorize 2

Fine-Grained Parallelism

Techniques to enhance fine-grained parallelism:
• Loop Interchange
• Scalar Expansion
• Scalar Renaming
• Array Renaming
• Node Splitting

3

Motivational Example

DO J = 1, M
 DO I = 1, N
 T = 0.0
 DO K = 1,L
 T = T + A(I,K) * B(K,J)
 ENDDO
 C(I,J) = T
 ENDDO
ENDDO

4

Motivational Example

DO J = 1, M
 DO I = 1, N
 T$(I) = 0.0
 DO K = 1,L
 T$(I) = T$(I) + A(I,K) * B(K,J)
 ENDDO
 C(I,J) = T$(I)
 ENDDO
ENDDO

5

Motivational Example II

• Loop Distribution gives us:
DO J = 1, M
 DO I = 1, N
 T$(I) = 0.0
 ENDDO
 DO I = 1, N
 DO K = 1,L
 T$(I) = T$(I) + A(I,K) * B(K,J)
 ENDDO
 ENDDO
 DO I = 1, N
 C(I,J) = T$(I)
 ENDDO
ENDDO

6

Motivational Example III

Finally, interchanging I and K loops, we get:
DO J = 1, M
 T$(1:N) = 0.0
 DO K = 1,L
 T$(1:N) = T$(1:N) + A(1:N,K) * B(K,J)
 ENDDO
 C(1:N,J) = T$(1:N)
ENDDO

• A couple of new transformations used:
• Loop interchange
• Scalar Expansion

7

Loop Interchange

 DO I = 1, N
 DO J = 1, M
S A(I,J+1) = A(I,J) + B • DV:
 ENDDO
 ENDDO

8

Loop Interchange

• Loop interchange is a reordering transformation
• Why?

• Think of statements being parameterized with the
corresponding iteration vector

• Loop interchange merely changes the execution order of these
statements.

• It does not create new instances, or delete existing instances

 DO J = 1, M
 DO I = 1, N
S <some statement>
 ENDDO
 ENDDO

• If interchanged, S(2, 1) will execute before S(1, 2)

9

Loop Interchange: Safety

• Safety: not all loop interchanges are safe

DO J = 1, M
 DO I = 1, N
 A(I,J+1) = A(I+1,J) + B
 ENDDO
ENDDO

• If we interchange loops, will we violate a dependence

10

Loop Interchange: Safety

• A dependence is interchange-preventing with respect to a given pair of loops if
interchanging those loops would reorder the endpoints of the dependence.

11

Scalar Expansion

Scalar Expansion

• Can we vectorize the following code?

 DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T
 ENDDO

13

Scalar Expansion
• However, not always profitable. Consider:

 DO I = 1, N
 T = T + A(I) + A(I+1)
 A(I) = T
 ENDDO

• Scalar expansion gives us:

 T$(0) = T
 DO I = 1, N
S1 T$(I) = T$(I-1) + A(I) + A(I+1)
S2 A(I) = T$(I)
 ENDDO
 T = T$(N)

14

Scalar Expansion: Safety

• Scalar expansion is always safe
• When is it profitable?

• Naïve approach: Expand all scalars, vectorize, shrink all
unnecessary expansions.

• However, we want to predict when expansion is profitable

• Dependences due to reuse of memory location vs. flow of values
• Dependences due to flows of values must be preserved
• Dependences due to reuse of memory location can be deleted

by expansion

15

Scalar Expansion: Covering Definitions

• A definition X of a scalar S is a covering definition for loop L if a
definition of S placed at the beginning of L reaches no uses of S that
occur past X.

 DO I = 1, 100
S1 T = X(I)
S2 Y(I) = T
 ENDDO

 DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T = X(I)
S2 Y(I) = T
 ENDIF
 ENDDO

covering

covering

16

Scalar Expansion: Covering Definitions

• A covering definition does not always exist:

 DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T = X(I)
 ENDIF
S2 Y(I) = T
 ENDDO

• In SSA terms: There does not exist a covering definition for a
variable T if the edge out of the first assignment to T goes to a
φ-function later in the loop which merges its values with those for
another control flow path through the loop

17

Scalar Expansion: Covering Definitions

• We will consider a collection of covering definitions

• There is a collection C of covering definitions for T in a loop if
either:
• There exists no φ-function at the beginning of the loop that

merges versions of T from outside the loop with versions
defined in the loop, or,

• The φ-function within the loop has no SSA edge to any φ-
function including itself

18

Scalar Expansion: Covering Definitions
• Remember the loop which had no covering definition:
 DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T = X(I)
 ENDIF
S2 Y(I) = T
 ENDDO

• To form a collection of covering definitions, we can insert dummy assignments:
 DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T = X(I)
 ELSE
S2 T = T
 ENDIF
S3 Y(I) = T
 ENDDO

19

Scalar Expansion: Covering Definitions

• Algorithm to insert dummy assignments and compute the
collection, C, of covering definitions:

• Central idea: Look for parallel paths to a φ-function following
the first assignment, until no more exist

• Algorithm: see textbook

20

Scalar Expansion: Covering Definitions

 DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T = X(I)
 ENDIF
S2 Y(I) = T
 ENDDO

DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T = X(I)
 ELSE
S2 T = T
 ENDIF
S3 Y(I) = T
 ENDDO

T$(0) = T
DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T$(I) = X(I)
 ELSE
 T$(I) = T$(I-1)
 ENDIF
S2 Y(I) = T$(I)
ENDDO

After inserting covering definitions:

After scalar expansion:

21

Deletable Dependences

• Uses of T before covering definitions are expanded as
T$(I - 1)

• All other uses are expanded as T$(I)
• The deletable dependences are:

• Backward carried antidependences
• Backward carried output dependences
• Forward carried output dependences
• Loop-independent antidependences into the covering definition
• Loop-carried true dependences from a covering definition

22

Scalar Expansion: Drawbacks

• Expansion increases memory requirements
• Solutions:

• Expand in a single loop
• Strip mine loop before expansion
• Forward substitution:

 DO I = 1, N
 T = A(I) + A(I+1)
 A(I) = T + B(I)
 ENDDO

 DO I = 1, N
 A(I) = A(I) + A(I+1) + B(I)
 ENDDO

23

Scalar and Array Renaming

Scalar Renaming
 DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T
 ENDDO

• Renaming scalar T:
 DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2
 ENDDO

25

Scalar Renaming

• will lead to:
S3 T2$(1:100) = D(1:100) - B(1:100)
S4 A(2:101) = T2$(1:100) * T2$(1:100)
S1 T1$(1:100) = A(1:100) + B(1:100)
S2 C(1:100) = T1$(1:100) + T1$(1:100)
 T = T2$(100)

26

Scalar Renaming

• Renaming algorithm partitions all definitions and uses into
equivalent classes, each of which can occupy different memory
locations:
• Use the definition-use graph to:
• Pick definition
• Add all uses that the definition reaches to the equivalence

class
• Add all definitions that reach any of the uses…
• ..until fixed point is reached

27

Scalar Renaming: Profitability

• Scalar renaming will break recurrences in which a loop-
independent output dependence or antidependence is a critical
element of a cycle

• Relatively cheap to use scalar renaming
• Usually done by compilers when calculating live ranges for register

allocation

28

Array Renaming

 DO I = 1, N
S1 A(I) = A(I-1) + X
S2 Y(I) = A(I) + Z
S3 A(I) = B(I) + C
 ENDDO

• S1 δ∞ S2 S2 δ∞
-1 S3 S3 δ1 S1 S1 δ∞

0 S3

• Rename A(I) to A$(I):
 DO I = 1, N
S1 A$(I) = A(I-1) + X
S2 Y(I) = A$(I) + Z
S3 A(I) = B(I) + C
 ENDDO

• Dependences remaining: S1 δ∞ S2 and S3 δ1 S1

29

Array Renaming: Profitability

• Examining dependence graph and determining minimum set of
critical edges to break a recurrence is NP-complete!

• Solution: determine edges that are removed by array renaming
and analyze effects on dependence graph

• procedure array_partition:
• Assumes no control flow in loop body
• identifies collections of references to arrays which refer to

the same value
• identifies deletable output dependences and antidependences

• Use this procedure to generate code
• Minimize amount of copying back to the “original” array at the

beginning and the end

30

Node Splitting

Optimizing Compilers for Modern Architectures

Node Splitting
• Can we vectorize the following loop?

DO I = 1, N !
S1: A(I) = X(I+1) + X(I)
S2: X(I+1) = B(I) + 32
ENDDO

Optimizing Compilers for Modern Architectures

Node Splitting
DO I = 1, N !
S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32
ENDDO

• Break critical antidependence

• Make copy of node from which
antidependence emanates

DO I = 1, N
S1’:X$(I) = X(I+1)
!
S1: A(I) = X$(I) + X(I)
S2: X(I+1) = B(I) + 32
ENDDO

• Recurrence broken

• Vectorized to
X$(1:N) = X(2:N+1)!
X(2:N+1) = B(1:N) + 32
A(1:N) = X$(1:N) + X(1:N)

Optimizing Compilers for Modern Architectures

Node Splitting Algorithm
• Takes a constant loop independent antidependence D

• Add new assignment x: T$=source(D)

• Insert x before source(D)

• Replace source(D) with T$

• Make changes in the dependence graph

Optimizing Compilers for Modern Architectures

Node Splitting
• Determining minimal set of critical antidependences is in NP-C

• Perfect job of Node Splitting difficult

• Heuristic:
—Select antidependences
—Delete it to see if acyclic
—If acyclic, apply Node Splitting

Summary

• Enhancing fine-grained parallelism
• break dependence cycles
• pick false dependences

• caused by memory reuse not value flow
• can be removed by renaming

• not dependence cycles can be made acyclic
• Transformations discussed

•

36

