CSC 255/455 Software Analysis and Improvement

Enhancing Parallelism

Instructor: Chen Ding

Chapter 5, Optimizing Compilers for Modern Architectures, Allen and Kennedy www.cs.rice.edu/~ken/comp515/lectures/

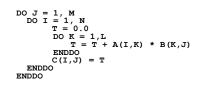
Where Does Vectorization Fail?

procedure vectorize (L, k, D) // L is the maximal loop nest containing the statement. // k is the current loop level // D is the dependence graph for statements in L. find the set $\{S_1, S_2, ..., S_m\}$ of SCCs in D construct L_p from L by reducing each S_i to a single node use topological sort to order nodes in L_p to $\{p_1,\,p_2,\,...\,,\,p_m\}$ for i = 1 to m do begin if p_i is a dependence cycle then generate a level-k DO construct D_i be p_i dependence edges in D at level k+1 or greater codegen (p_i, k+1, D_i) generate the level-k ENDDO else vectorize p_i with respect to every loop containing it end end vectorize 2

Fine-Grained Parallelism

- Techniques to enhance fine-grained parallelism:
- Loop Interchange
- Scalar Expansion
- Scalar Renaming
- Array Renaming
- Node Splitting

Motivational Example



Motivational Example

5

3

```
DO J = 1, M

DO I = 1, N

T$(I) = 0.0

DO K = 1, L

T$(I) = T$(I) + A(I,K) * B(K,J)

ENDDO

C(I,J) = T$(I)

ENDDO

ENDDO
```

Motivational Example II

6

4

Loop Distribution gives us:

DO J = 1, M DO I = 1, N T\$(I) = 0.0 ENDDO DO I = 1, N DO K = 1, L T\$(I) = T\$(I) + A(I,K) * B(K,J) ENDDO DO I = 1, N C(I,J) = T\$(I) ENDDO ENDDO ENDDO

Motivational Example III

Finally, interchanging ${\tt I}$ and ${\tt K}$ loops, we get:

DO J = 1, M T\$(1:N) = 0.0 DO K = 1,L T\$(1:N) = T\$(1:N) + A(1:N,K) * B(K,J) ENDDO C(1:N,J) = T\$(1:N) ENDDO

• A couple of new transformations used:

- Loop interchange
- Scalar Expansion

Loop Interchange

```
DO I = 1, N

DO J = 1, M

S A(I,J+1) = A(I,J) + B • DV:

ENDDO

ENDDO
```

Loop Interchange

7

- Loop interchange is a reordering transformation
- Why?
 - Think of statements being parameterized with the corresponding iteration vector
 - Loop interchange merely changes the execution order of these statements.
 - It does not create new instances, or delete existing instances
- DO J = 1, M DO I = 1, N S <some statement> ENDDO ENDDO
- If interchanged, S(2, 1) will execute before S(1, 2)

Loop Interchange: Safety

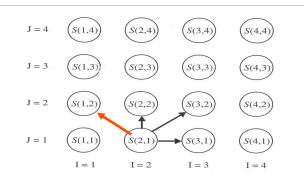
8

- Safety: not all loop interchanges are safe
- DO J = 1, M DO I = 1, N A(I,J+1) = A(I+1,J) + B ENDDO ENDDO
- If we interchange loops, will we violate a dependence

10

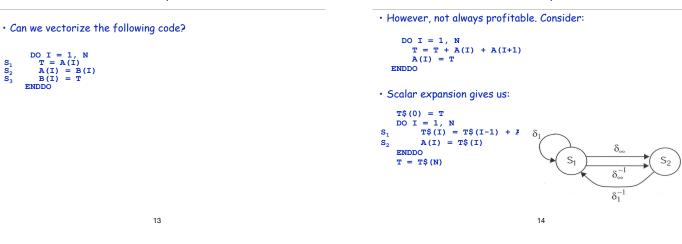
Loop Interchange: Safety

9



 A dependence is interchange-preventing with respect to a given pair of loops if interchanging those loops would reorder the endpoints of the dependence. **Scalar Expansion**

Scalar Expansion



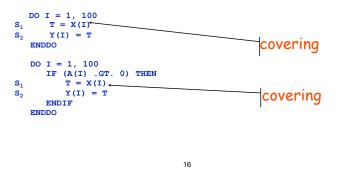
Scalar Expansion: Safety

- · Scalar expansion is always safe
- When is it profitable?
 - Naïve approach: Expand all scalars, vectorize, shrink all unnecessary expansions.
 - However, we want to predict when expansion is profitable
- · Dependences due to reuse of memory location vs. flow of values
 - Dependences due to flows of values must be preserved
 - Dependences due to reuse of memory location can be deleted by expansion

15

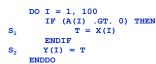
Scalar Expansion

 A definition X of a scalar S is a covering definition for loop L if a definition of S placed at the beginning of L reaches no uses of S that occur past X.



Scalar Expansion: Covering Definitions

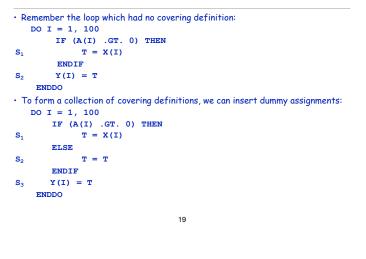
• A covering definition does not always exist:



Scalar Expansion: Covering Definitions

- · We will consider a collection of covering definitions
- There is a collection C of covering definitions for T in a loop if either:
 - There exists no ϕ -function at the beginning of the loop that merges versions of T from outside the loop with versions defined in the loop, or,
 - The ϕ -function within the loop has no SSA edge to any ϕ -function including itself

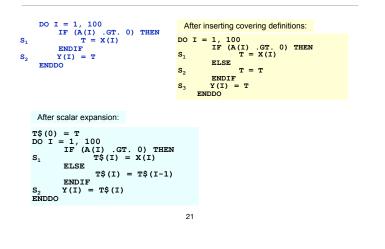
Scalar Expansion: Covering Definitions



Scalar Expansion: Covering Definitions

- Algorithm to insert dummy assignments and compute the collection, *C*, of covering definitions:
 - Central idea: Look for parallel paths to a $\phi\text{-function}$ following the first assignment, until no more exist
 - Algorithm: see textbook

Scalar Expansion: Covering Definitions



Deletable Dependences

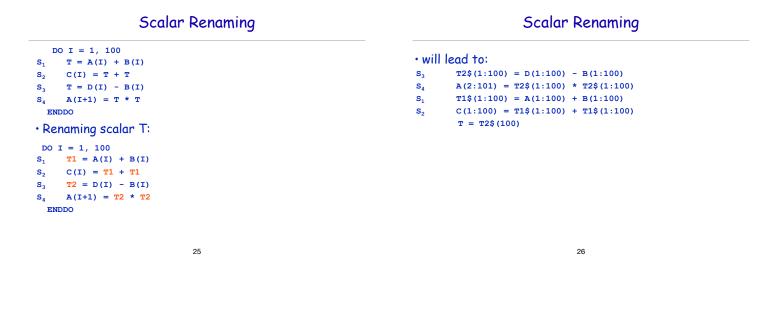
20

- Uses of T before covering definitions are expanded as T\$(I 1)
- All other uses are expanded as T\$(I)
- The deletable dependences are:
- Backward carried antidependences
- · Backward carried output dependences
- Forward carried output dependences
- · Loop-independent antidependences into the covering definition
- Loop-carried true dependences from a covering definition

22

Scalar Expansion: Drawbacks

Scalar and Array Renaming



Scalar Renaming

- Renaming algorithm partitions all definitions and uses into equivalent classes, each of which can occupy different memory locations:
 - Use the definition-use graph to:
 - Pick definition
 - Add all uses that the definition reaches to the equivalence class
 - · Add all definitions that reach any of the uses...
 - ..until fixed point is reached

Scalar Renaming: Profitability

- Scalar renaming will break recurrences in which a loopindependent output dependence or antidependence is a critical element of a cycle
- · Relatively cheap to use scalar renaming
- Usually done by compilers when calculating live ranges for register allocation

27

Array Renaming

DO I = 1, N A(I) = A(I-1) + XS₁ Y(I) = A(I) + ZS. S₃ A(I) = B(I) + CENDDO $S_2 \delta_{\infty}^{-1} S_3$ $S_1 \delta_{\infty}^{0} S_3$ • $S_1 \delta_{\infty} S_2$ $S_3 \delta_1 S_1$ • Rename A(I) to A\$(I): DO I = 1, N A\$(I) = A(I-1) + X Y(I) = A\$(I) + Z A(I) = B(I) + CS₁ S₂ S₃ ENDDO • Dependences remaining: $S_1 \delta_{\infty} S_2$ and $S_3 \delta_1 S_1$

Array Renaming: Profitability

28

- Examining dependence graph and determining minimum set of critical edges to break a recurrence is NP-complete!
- Solution: determine edges that are removed by array renaming and analyze effects on dependence graph
- procedure array_partition:
 - · Assumes no control flow in loop body
 - identifies collections of references to arrays which refer to the same value
 - $\boldsymbol{\cdot}$ identifies deletable output dependences and antidependences
- Use this procedure to generate code
 - Minimize amount of copying back to the "original" array at the beginning and the end

Node Splitting

• Can we vectorize the following loop?

DO I = 1, N S1: A(I) = X(I+1) + X(I) S2: X(I+1) = B(I) + 32 ENDDO

Node Splitting

Optimizing Compilers for Modern Architectures

Node Splitting

DO I = 1, N S1: A(I) = X(I+1) + X(I)S2: X(I+1) = B(I) + 32

• Break critical antidependence

ENDDO

• Make copy of node from which antidependence emanates

DO I = 1, N
\$1':X\$(I) = X(I+1)
S1: $A(I) = X$(I) + X(I)$
S2: $X(I+1) = B(I) + 32$
ENDDO

Recurrence broken

 Vectorized to X\$(1:N) = X(2:N+1) X(2:N+1) = B(1:N) + 32 A(1:N) = X\$(1:N) + X(1:N)

Node Splitting Algorithm

- Takes a constant loop independent antidependence D
- Add new assignment x: T\$=source(D)
- Insert × before source(D)
- Replace source(D) with T\$
- Make changes in the dependence graph

Optimizing Compilers for Modern Architectures

Optimizing Compilers for Modern Architectures

Node Splitting

- Determining minimal set of critical antidependences is in NP-C
- Perfect job of Node Splitting difficult
- Heuristic:
 - -Select antidependences
 - -Delete it to see if acyclic
 - -If acyclic, apply Node Splitting

Summary

- Enhancing fine-grained parallelism
 - break dependence cycles
 - pick false dependences
 - caused by memory reuse not value flow
 can be removed by renaming
 - not dependence cycles can be made acyclic
- Transformations discussed

•