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775" Why Empirical Tuning?

1 Too many different machines
= Each one is as complex as the next
[ Conventional compilers are black boxes
= Compilers lack understanding of

applications and architectures n
= Developers have little control
J  Use empirical tuning to tackle the i =
complexity of modern architectures R Il
= Programmable compiler optimization ’
= Exposed and easily modifiable by \\ Compiler
developers
= Fine-grained parameterization !

s Each ngimiéa'ri%n.cgn be dontl
reconfigured and independently
turned on/off ==y
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1 What does it take to get good performance?
= Multi-core: concurrent execution (multiple threads)
= Memory hierarchy: cache locality and shared data access
= CPU performance <= parallel and memory efficiency

Jan 23,2012 HIPEAC12-Tutorial 3

r

77" Language Features of POET

1 Parse/transform/unparse arbitrary

languages s CIC++ ® Fortran
= Currently support subsets of \ 77/95
C/C++, Fortran, Java

* i
= Mix syntaxes from different -, //s
languages j; Java
e taarona Y Prodrem /557 -~y 2
= Xforms generic for all languages 5 P3?°
= Fine-grained parameterization Domain- y

=
. o specific =
4 Flexible composition of
fransformations languages ‘
= Dynamic tracing of independent )

transformations

= Easy reordering of
transformations

4 Details documented in (Yi,Software
Practice and Experience,2011).
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775" Parameterization of Optimizations

- Auto-tuning of computation-intensive kernels
*  Manually compose parameterized scripts for kernels
= Invoke predefined optimizations in POET library
= Loop parallelization, blocking, fusion, unroll&jam, scalar
replacement, three-address translation, unrolling, SSE
vectorization, prefetching, strength reduction
= Successful applications
= ATLAS kernels: gemm, gemv, ger (LCSD'07) achieved similar
performance as that by ATLAS Assembly
= Stencil kernels: 7-point and 27-point jacobi, 7-point Gauss-
Seidel (CF'11)
= Selective fragments from SPEC95 FP benchmarks (NPC'10)
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75" Redundancy Elimination
1 Strength reduction

= Using surrounding loops to incrementally compute
complex expressions

void initialize(float* A,

void initialize(float* A,
float *B, int N, int M)

float *B, int N, int M)

{
for (int i=0; i<N; ++i) { for (inti=0;i<N;++i){
)

for (int j=0; j<M; ++j) { for (intj=0;j < M; ++j) {
H(A+HM+) = *(B+*M+); - *(A++) = *(B++);
} }

} }
} }
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7" An example POET script

include opt.pi —> The POET optimization library

<parameter out default="" message="Output file name"/>

<parameter par parse=INT default=2 message="# of threads to run nest1"/>

<parameter par_bk parse=INT default=256 message="# of iterations to run on each thread"/>
<parameter cache_bk parse=LIST(INT," ") default=1 message="blocking factor for nest1"/>
...... Dynamically trace transformation input and result
<trace inputCode,decl,nest1,nest3,nest2/>

<input from="dgemm_test.C" syntax="Cfront.code" to=inputCode/>

<define TRACE_DECL decl/>

<define TRACE_INCL inputCode/> Simple input/output commands

<define TRACE_TARGET inputCode />

<eval
BlockLoopsl[factor=par_bk](nest1[Nest.body], nest1);
ParallelizeLoop[threads=par;private=nest1_private](nest1), . P
TraceNestedLoops(nest1, nest1[Nest.body]); glfeglgl!ﬁ‘icz%?ﬁ)?‘ssmon
BlockLoops|[factor=cache_bk](nest2, nest1); P
CleanupBlockedNests(inputCode);/>

<output to=out syntax="Cfront.code" from=(inputCode)/>
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DET:
- Supporting Arbitrary Languages
4 POET can be used to parse/unparse arbitrary languages
= Language syntax described using code templates
= Input dynamically matched against syntax spec.
= Different languages can be arbitrarily mixed
s Each AST node can be dynamically associated with
different syntaxes
4 Language translation is trivial
= Use one language syntax to parse an input code
= Use another language syntax to unparse the input code
1 Easy domain-specific code generation
= Use code template to define domain-specific concepts
= Associate parameterized codelets to each concept
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77" Example: C to Fortran Translation

<parameter inputFile default="" message="input file name" />
<parameter outputFile default="" message="output file name" />

<input from=inputFile syntax="Cfront.code" to=inputCode/>
<output to=outputFile syntax="C2F.code" from=inputCode/>

- Read using "Cfront.code” then unparse the input using "C2F.code”
= inputFile/outputFile: can process arbitrary input files
- Language syntaxes are specified in separate files
= Cfront.code: defines C syntax
= C2F.code: defines Fortran syntax for C concepts
- Each input/output command can use a different syntax file
= Associate code templates with different syntaxes
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Languages as libraries
Full Text: FppF

775" Specifying Language Syntax
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J  Reconfigure POET tokenizer via macros
= TOKEN: new tokens to recognize
= KEYWORDS: keywords of the language
s Not to be confused with identifiers (var hames)
4 Reconfigure POET parser via macros
= PARSE: the top-level syntax to parse an input program
= UNPARSE: the top-level syntax to unparse a program
= PREP: preprocessor of token stream before parsing
= BACKTRACK: whether to allow backtracking in parsing
= More efficient parser but harder to make work
1 Reconfigure POET expression parser
= EXP_BASE: base cases of operands in expressions
= EXP_BOP/PARSE_BOP/BUILD_BOP: binary operations
= EXP_UOP/PARSE_UOP/BUILD_UOP: unary operations
= PARSE_CALL/PARSE_ARRAY: function calls/array accesses

Jan 23,2012 HIPEAC12-Tutorial 29




&V
725" POET Variables

- Local variables: local a code template or xform routine
= Dynamically typed. No declaration necessary
- Static variables: scope restricted within a POET file
= Protection of namespaces within different scripts
1 Global variables: global across an entire POET program
= Command-line parameters
= Set via command-line options of invoking POET interpreter
= Macro variables
Configure behavior of the POET interpreter and each script
= Tracing handles
s Can be embedded inside compound data objects
= Keep track of transformations to various AST fragments
4 Name qualifier: qualify variable names to avoid confusion
= CODE.x: x is a global code template name
= XFORM.x: x is a global xform routine name
= GLOBAL.x: x is a global variable name
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=" Assignments And Control Flow

1 The assignment statement can be used to
= Modify a single local, static, or global variable: x = b;
= Modify an entry within an associative map: m[a]=b;
= Extract components from a compound data structure
s (abc)=("a""b" "c"); Loop#(i,ab,c)=l;
4 POET mostly uses a functional programming model
= Only allows associative maps to be directly modified
= Disallows modification of other compound data types
5 Unless tracing handles are embedded inside them
= Operators returh new value as result instead of modifying input
= Unless fracing handles are embedded inside input or passed
as parameters
4 Control flow support
= If-else, switch, for loop, foreach loop, recursive function calls
= RETURN, BREAK, CONTINUE
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7 " Tracing Handles In POET

1 A special kind of global
variables

= Scope and lifetime span
all POET files involved in

a program
1 Can be Used to
= Embedded as part of gemmDec| [nestt ]

input code internal
representation o trace

transformations

i
77" Developing Program Analyses

4 POET provide means fo easily navigate an AST
= Collected information typically saved in lists or maps
= Use code templates for specialized representations
s Code templates are user-defined types in POET
o With built-in support for parsing/unparsing
1 Program analyses implemented in POET
= Type checking, control-flow analysis, data-flow
analysis
= Mostly done in small scale as compiler class projects

= Save optional results of .
xform routine
invocations
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“ . Developing Program Transformations T Example; LOOp Permutation

1 A program transformation takes an input AST and
returns a new one

= For optimization purposes, the new code must be
equivalent to the original one

= May want to modify the original AST directly
s E.g., to keep a single version of working AST
1 Each POET transformation is an operation that
= Takes an input AST and returns the transformed one
= Modifies the input AST if it contains trace handles

s An AST cannot be directly modified as different
ASTs may share common components
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<xform PermuteLoops pars=(inner,input)
order=0 trace=GLOBAL.TRACE_TARGET>
(order == 0)? input

: (! (input : Nest#(loop,body)) )? ( ERROR("Input is not a loop nest!") )
(

(loops,nests) = FindLoopsInNest(inner, input);

if (LEN(loops) != LEN(order))

ERROR("Incorrect reordering indices: " order "\n Loops are: " loops);

nloops = PERMUTE (order, loops);

res = BuildNest(nloops, inner);

res = TraceNestedLoops[trace=input](nests, res);

if (trace : VAR) REPLACE(ERASE(input), res, trace);

<Ixform>

- Main challenge: keeping tracing handles consistent
= All POET operations automatically modify these handles
= Need to avoid creating cycles in the AST
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7= The POET Optimization Library

1 Defined in POET/lib/opt.pt (interface in opt.pi)
1 Loop optimizations
= Targeting multi-core architectures
@ OpenMP loop parallelization
= Targeting memory performance
@ Loop blocking, interchange, fusion, fission, skewing
= Targeting register-level performance
o Loop unroll&jam, unrolling, SSE vectorization
1 Data layout optimizations
= Reducing the cost of array references
@ Array copying, scalar replacement, strength

L
F2ET Optimization Interface

4 Single loop transformations: Op [optional params] (loop)
= ParallelizeLoop(x): OpenMP loop parallelization
= UnrollLoop(x): loop unrolling
s CleanupBlockedNests(x): generate cleanup code
1 Loop nest transformations : Op [optional params] (inner, outer)
= Operate between an inner body n and an outer loop x
= UnrollLoops(n,x)/UnrollJam(n,x): Loop unrolling/Unroll&jam
= BlockLoops(n,x)/PermuteLoops(n,x): loop blocking/interchange
4 Configuration required transforms: opt[optional params](config, loop)
= Operate on input x based on various configurations
s DistributeLoops(bodiesToDist x): distribute loop x
s Fuseloops(nestsToFuse pivot): replace pivot with fused loop
s VectorizeLoop(vars, x): Loop vectorization with SSE registers

reduction s CopyRepl(a,d,x): copy memory accessed by array a[d] inside x
= ScalarRepl(a,d x): use scalars to substitute a[d] inside x
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775" Use Cases Of POET

1 Parameterization of Optimizations for Empirical Tuning
= Lightweight portable program transformation engine
= Parameterized at the finest granularity

1 Programmable control of compiler optimizations
= Flexible composition of independently defined opts

1 Domain-specific code generation/ad-hoc translation
= Source-to-source translator among arbitrary

T Programmable Compiler Optimizations

1 Use ROSE loop optimizer to automatically generate

POET optimization scripts

= Support multi-core, memory, and CPU optimizations
(Yi, c60'11)
@ OpenMP parallelization, blocking, array copying,

unroll-and-jam, scalar replacement, loop unrolling

= Optimized gemm,gemv, ger, and dgetrf

= TInvoke optimizations implemented using POET

languages
It 1 Advantages
= Modifiable compiler optimizations
= Tuning space auto-explored by Search engines
1 Scripts publicly available inside POET source tree at
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& 77" Summary And Conclusions

\ b

" Domain-specific Translation

1 Domain-specific code generation and optimization
= E.g., stencil code and dense matrix code optimizers
= Trace key components of input code (e.g., loops)
= Apply optimizations known to be beneficial
d  Quickly translate between ad-hoc languages
= E.g., C<=> Fortran; C++ <=> Java
= Map multiple languages to a single AST
o Input: read in the AST using one syntax
= QOutput: unparse the AST using a different syntax
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4 POET can be used to support
= Programmable control of compiler optimizations
= Currently support many loop optimizations and expanding
= Can automatically generat scripts using the ROSE compiler
= Fine-grained parameterization for empirical tuning
= Integrated search algorithms
= Study performance impacts of optimizations via tuning
= Ad-hoc translation and domain-specific code generation
= Dynamically parse/unparse and mix different languages
1 Flexibility and easy of use
= Easy to parameterize optimizations
= One xform can work on many languages
= Can focus on just small code segments
= Can completely customize to your liking once familiar with POET
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