Model Checking

* Why static solutions?
- what are non-static solutions called?

Model Checking * Model checking

+ exhaustive checking whether an error state is reachable
* Temporal logic

22 branches - an interface to specify properties such as “always" and
613 commits :‘eventua:jly" | ies di 5
1251 files ow are data flow properties different:

+ Symbolic model checking

1881 changes - powered Microsoft's Static Driver Verifier
4/28/2014 + Windows DDK

An Example Concurrent Program
A Program as a Transition System P 9

* A simple concurrent 10: while (true) {
- Labeled transition system T = (S, I, R, L) mutual exclusion program 11: wait(turn == 0);
. 5= set of states + Two processes execute // critical section
+ I = set of initial states asynchronously . 12: work(); turn = 1;
-RinS x S = transition relation * There is a shared variable 3.
- L: S -> 2" AP = labeling function turn
* AP: set of atomic propositions . TP\:IO processels use the || // concurrently with
- a proposition is variable x = y shared variable to ensure
- the labeling function labels each state with the set of true that they are not in the e e
propositions critical section at the : while (true) ({
same time 21: wait(turn == 1);
+ Can be viewed as a // critical section
“fundamental” program: 22: work(); turn = 0;

any bigger concurrent one 3.
would include this one

colorado.edu/~bec/col 10/schedule.him|

10: while (true) {

Reachable States T erivient seotion
of the Example Program oy Execution Paths

|| // concurrently with

e e * A path is a sequence of states

/1 sritical sestion - each pair is a transition in R
o, e + Linear time logic (LTL)
- properties defined on a single path
-eg. path |=Fp

+ Computation tree logic (CTL)

Next: formalize - path quantifiers

this intuition+ A: for all paths
+ E: there exists a path
Each state is a valuation - properties defined on states
of all the variables: - state |= AG p

turn and the two program

counters for two processes * The expressive powers of LTL and CTL are incomparable

colorado.edu/~bec/col 10/schedule.him!

7

Temporal Properties

* Next step

. X p
- is true in the next state

+ Invariant

-G P
- is true in a state if p is true
in all subsequent paths

* Eventually

. F p
+ is true somewhere on every
path

SMT-based Model Checking

+ Satisfiability Modulo Theories
* SAT plus models for numbers and data structures

* based on efficient SAT solvers

+ “Carla P. Gomes, Henry Kautz, Ashish Sabharwal, Bart Selman
(2008). "Ssatisfiability Solvers". In Frank Van Harmelen,
Vladimir Lifschitz, Bruce Porter. Handbook of knowledge
representation. Foundations of Artificial Intelligence 3.

Elsevier. pp. 89-134."

* Widely used for verification
* bounded memory, good locality (compared to BDD)

class Value {

NoURwN R

}
public int get() {

private int x = 1;
public synchronized void add(Value v) {

4
x = x+v.get(); 15

return x; 18

18

class Task extends Thread { o

8 Value v1; Value v2; 20

9 public Task(Value v1, Value v2) { bt

10 this.vl = v1; 2

11 this.v2 = v2; -
12}

13 public void run() {
1

vl.add(v2);

class Main
public static void main (String[] args) {

Value a = new Value();

Value b = new Value();

Thread t2 = new Thread (new Task(a, b));
Thread t3 = new Thread (new Task(b, a));
t2.start();

t3.start();

Fig. 1. A Java program with data races.

Temporal Properties = Fixpoints

+ States that satisfy AG(p) are all that are not in EF(not p)
* EF(not p) are states that can reach not p
+ Compute EF(not p) as a fixed point

* keep adding to EF(not p) until it converges
* least fixed point
* can be computed

* Use in falsification

+ i.e. finding a counter example where the property does not
hold

URCS Seminars & Talks

Department Seminar Series

Wednesday, July 20, 2011
10:00 AM
CSB Room 703

Zijiang James Yang
Western Michigan University

SMT Based Symbolic Analysis for Concurrent Systems

Generating Data Race Witnesses by an
SMT-based Analysis

Mahmoud Said!, Chao Wang?, Zijiang Yang!, and Karem Sakallah®

1 Western Michigan Univerisity
2 NEC Laboratories America
3 University of Michigan

https://cs.wmich.edu/~zijiang/pub/nfm1 1final.pdf

The goal of our symbolic analysis is to search for witnesses among all se-
quentially consistent linearizations of 7 derived from the concrete execution 7.
We formulate the data race witness generation problem as a satisfiability prob-
lem. That is, we construct a quantifier-free first-order logic formula), such that
the formula is satisfiable if and only if there exists a sequentially consistent lin-
earization of 7 that leads to a state in which two data-conflict events are both
enabled. The formula 1), is a conjunction of the following subformulas

Yr = ar ABx AVx A pr
In Section 3 we present algorithms to encode the partial order (), write-read

consistency (3r), and data race property (p,) in first-order logic (FOL) formulas.
In Section 4 we discuss the encoding of synchronization consistency (vr)-

Symbolic Model Checking

+ It represents state sets and the transition relation as Boolean
logic formulas

+ Fixed point computations manipulate sets of states by
iteratively evaluating these formulas

* Use an efficient data structure

- BDD

Binary Decision Diagrams (BDDs)

* Representation of boolean functions

- aset is a function

+ Disjunction and conjunction are at most quadratic
* Negation is constant

+ Equivalence checking is constant or linear

+ Image computation can be exponential

