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Model Checking

• Why static solutions?
• what are non-static solutions called?

• Model checking
• exhaustive checking whether an error state is reachable

• Temporal logic
• an interface to specify properties such as “always” and 

“eventually”
• how are data flow properties different?

• Symbolic model checking
• powered Microsoft’s Static Driver Verifier

• Windows DDK
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A Program as a Transition System

• Labeled transition system T = (S, I, R, L)
• S =  set of states
• I = set of initial states
• R in S x S =  transition relation
• L: S -> 2^AP = labeling function

• AP: set of atomic propositions
• a proposition is variable x = y
• the labeling function labels each state with the set of true 

propositions

4 http://www.cs.colorado.edu/~bec/courses/csci5535-s10/schedule.html
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Execution Paths

• A path is a sequence of states
• each pair is a transition in R

• Linear time logic (LTL)
• properties defined on a single path

• e.g. path |= F p
• Computation tree logic (CTL)

• path quantifiers
• A: for all paths
• E: there exists a path

• properties defined on states
• state |= AG p

• The expressive powers of LTL and CTL are incomparable
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Temporal Properties

• Next step
• X p

• is true in the next state
• Invariant

• G p
• is true in a state if p is true 

in all subsequent paths
• Eventually

• F p
• is true somewhere on every 

path
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Temporal Properties = Fixpoints
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• States that satisfy AG(p) are all that are not in EF(not p)
• EF( not p) are states that can reach not p
• Compute EF( not p ) as a fixed point

• keep adding to EF( not p ) until it converges
• least fixed point
• can be computed

• Use in falsification
• i.e. finding a counter example where the property does not 

hold

SMT-based Model Checking

• Satisfiability Modulo Theories
• SAT plus models for numbers and data structures
• based on efficient SAT solvers

• “Carla P. Gomes, Henry Kautz, Ashish Sabharwal, Bart Selman 
(2008). "Satisfiability Solvers". In Frank Van Harmelen, 
Vladimir Lifschitz, Bruce Porter. Handbook of knowledge 
representation. Foundations of Artificial Intelligence 3. 
Elsevier. pp. 89–134.”

• Widely used for verification
• bounded memory, good locality (compared to BDD)
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Abstract. Data race is one of the most dangerous errors in multi-
threaded programming, and despite intensive studies, it remains a no-
torious cause of failures in concurrent systems. Detecting data races,
statically or dynamically, is already a hard problem, and yet it is even
harder for a programmer to decide whether or how a reported data race
can appear in the actual program execution. In this paper we propose
an algorithm for generating debugging aid information called witnesses,
which are concrete thread schedules that can deterministically trigger
the data races. More specifically, given a concrete execution trace of the
program, which may be non-erroneous but have triggered a warning in
Eraser-style data race detectors, we use a symbolic analysis based on
SMT solvers to search for such a witness among alternative interleav-
ings of events of that trace. Our symbolic analysis precisely encodes the
sequential consistency semantics using a scalable predictive model to en-
sure that the reported witness is always feasible.

1 Introduction

A data race occurs in a multithreaded program when two threads access the
same memory location with no ordering constraints enforced in between, and at
least one of the accesses is a write. Programs containing data races are difficult
to debug because they may exhibit different behaviors under the same set of
inputs. Despite that numerous static and dynamic techniques have been devel-
oped in the past decades to detect data races [9, 1, 7, 18, 17, 13, 24, 6, 10], they can
only report data race warnings, often in the form of pairs of program locations.
None of these methods provide witnesses to help the programmers determinis-
tically reproduce the reported data race during actual program executions. In
practice, a single synchronization error caused by data race can take weeks for
programmers to identify [4, 21]. For software platforms using relaxed memory
models, e.g. Java 5.0, it is absolutely crucial to remove all data races in user ap-
plications even if they do not appear to cause logic errors, because these memory
models guarantee sequential consistency only to race-free programs [16]; without
sequential consistency guarantee, it is almost impossible to write multithreaded
user applications due to compiler optimizations such as out-of-order execution.

In this paper we present an algorithm to generate data race witnesses in
multithreaded Java programs based on analyzing a single execution trace. By
witness, here we mean a concrete thread schedule of the program execution that
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class Value {
1 private int x = 1;
2 public synchronized void add(Value v) {
3 x = x+v.get();
4 }
5 public int get() {
6 return x;
7 }}
class Task extends Thread {
8 Value v1; Value v2;
9 public Task(Value v1, Value v2) {
10 this.v1 = v1;
11 this.v2 = v2;
12 }

13 public void run() {
14 v1.add(v2);
15 }}
class Main {
16 public static void main (String[] args) {
17 Value a = new Value();
18 Value b = new Value();
19 Thread t2 = new Thread (new Task(a, b));
20 Thread t3 = new Thread (new Task(b, a));
21 t2.start();
22 t3.start();
23 }}

Fig. 1. A Java program with data races.

event is denoted as a pair of the thread index and the line number(s). During
this execution, the shared variable b.x is read by thread t2 at line 6 (aliased as
t2.v1.x) and written by thread t3 at line 3 (aliased as t3.v2.x). However, this
trace is not a witness of data race because the two aforementioned accesses to
b.x are never simultaneously enabled. There exists an alternative interleaving of
the same set of events: . . . (2,13-14), (2,2-3), (2,5), (3,13-14), (3,2), (2,6), (3,3),
(3,5-7), (3,4),(3,15), (2,7), (2,4), (2,15). It is a data race witness because there
exists a state in which the read access by event (2,6) and the write access by
event (3,3) are both enabled. It is guaranteed to be an actual program execution
because both write-read consistency and synchronization consistency

The goal of our symbolic analysis is to search for witnesses among all se-
quentially consistent linearizations of Tπ derived from the concrete execution π.
We formulate the data race witness generation problem as a satisfiability prob-
lem. That is, we construct a quantifier-free first-order logic formula ψπ such that
the formula is satisfiable if and only if there exists a sequentially consistent lin-
earization of Tπ that leads to a state in which two data-conflict events are both
enabled. The formula ψπ is a conjunction of the following subformulas

ψπ := απ ∧ βπ ∧ γπ ∧ ρπ

In Section 3 we present algorithms to encode the partial order (απ), write-read
consistency (βπ), and data race property (ρπ) in first-order logic (FOL) formulas.
In Section 4 we discuss the encoding of synchronization consistency (γπ).

3 Symbolic Encoding of The Write-Read Consistency

3.1 Encoding the Partial Order

Given a multithreaded trace π, let π|t = 〈et1, . . . , etn〉 be a sub-sequence that is a
projection of π onto the thread t. Let t.first and t.last be the first and last event
of thread t in π,i.e., et1 and etn, respectively. For each event e, we introduce an
event order (EO) variable whose value represents its position in a linearization
of Tπ. To ease our presentation, we assume that an EO variable shares the same
unique index with the corresponding event. Therefore oe.idx is the EO variable
for e. Let the number of events be |π|. The domain of oi, where 1 ≤ i ≤ |π|, is
[1..|π|]. Furthermore, we have oi %= oj if i %= j.

class Value {
1 private int x = 1;
2 public synchronized void add(Value v) {
3 x = x+v.get();
4 }
5 public int get() {
6 return x;
7 }}
class Task extends Thread {
8 Value v1; Value v2;
9 public Task(Value v1, Value v2) {
10 this.v1 = v1;
11 this.v2 = v2;
12 }

13 public void run() {
14 v1.add(v2);
15 }}
class Main {
16 public static void main (String[] args) {
17 Value a = new Value();
18 Value b = new Value();
19 Thread t2 = new Thread (new Task(a, b));
20 Thread t3 = new Thread (new Task(b, a));
21 t2.start();
22 t3.start();
23 }}

Fig. 1. A Java program with data races.

event is denoted as a pair of the thread index and the line number(s). During
this execution, the shared variable b.x is read by thread t2 at line 6 (aliased as
t2.v1.x) and written by thread t3 at line 3 (aliased as t3.v2.x). However, this
trace is not a witness of data race because the two aforementioned accesses to
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because both write-read consistency and synchronization consistency
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3 Symbolic Encoding of The Write-Read Consistency

3.1 Encoding the Partial Order

Given a multithreaded trace π, let π|t = 〈et1, . . . , etn〉 be a sub-sequence that is a
projection of π onto the thread t. Let t.first and t.last be the first and last event
of thread t in π,i.e., et1 and etn, respectively. For each event e, we introduce an
event order (EO) variable whose value represents its position in a linearization
of Tπ. To ease our presentation, we assume that an EO variable shares the same
unique index with the corresponding event. Therefore oe.idx is the EO variable
for e. Let the number of events be |π|. The domain of oi, where 1 ≤ i ≤ |π|, is
[1..|π|]. Furthermore, we have oi %= oj if i %= j.



Symbolic Model Checking

• It represents state sets and the transition relation as Boolean 
logic formulas

• Fixed point computations manipulate sets of states by 
iteratively evaluating these formulas

• Use an efficient data structure
• BDD
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Binary Decision Diagrams (BDDs)

• Representation of boolean functions
• a set is a function

• Disjunction and conjunction are at most quadratic
• Negation is constant
• Equivalence checking is constant or linear
• Image computation can be exponential
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