
CSC 255/455

Model Checking

Instructor: Chen Ding

2/26/2014 /Users/cding/cs255hg: revision graph

http://localhost:8000/graph/b48f23a0aea8 1/3

log

graph
tags

bookmarks

branches

changeset

browse

help

Mercurial
graph

less more | rev 241: (0) -100 -60 tip

slides for instruction scheduling, register allocation and partial redundancy removal default tip

slides on ssa uses

Merge yzh145

assignment 2 submission, the files are in /assignment/2_pass/base/gcc yzh145

branch merge update yzh145

branch commit yzh145

branch merge yzh145

Yanan Zhang's Homework yzh145

merge pli

any pli

merge ysong23

merge xjin6

Add GC Fixed Point notes

merge xjin6

readd test.rb

clean up the default branch

add summary of counts pli

assign. 2 pli

merge xhu9

update makefile xhu9

Merge from default hxu

merge

before merge

merge

homework1 added

merge default pli

merge pli

merged

2 minutes ago, by Chen Ding

16 minutes ago, by Chen Ding

5 days ago, by Yanan, Zhang

11 days ago, by Yanan, Zhang

12 days ago, by Yanan, Zhang

2 weeks ago, by Yanan, Zhang

2 weeks ago, by Yanan, Zhang

3 weeks ago, by Yanan, Zhang

20 hours ago, by Pengcheng, Li

20 hours ago, by Pengcheng, Li

5 days ago, by Yang, Song

5 days ago, by Xi Jin

5 days ago, by Gernhardt, Brian

6 days ago, by Xi Jin

6 days ago, by Lingxiang Xiang

6 days ago, by Lingxiang Xiang

6 days ago, by Pengcheng, Li

6 days ago, by Pengcheng, Li

6 days ago, by Xiaoyu, Hu

6 days ago, by Xiaoyu, Hu

6 days ago, by Hao, Xu

6 days ago, by cs255

6 days ago, by cs255

6 days ago, by Lingxiang, Xiang

6 days ago, by Lingxiang, Xiang

6 days ago, by Pengcheng, Li

13 days ago, by Pengcheng, Li

6 days ago, by Chen Ding

22 branches
544 commits
1105 files
1679 changes
4/21/2014

22 branches
613 commits
1251 files
1881 changes
4/28/2014

Model Checking

• Why static solutions?
• what are non-static solutions called?

• Model checking
• exhaustive checking whether an error state is reachable

• Temporal logic
• an interface to specify properties such as “always” and

“eventually”
• how are data flow properties different?

• Symbolic model checking
• powered Microsoft’s Static Driver Verifier

• Windows DDK

3

A Program as a Transition System

• Labeled transition system T = (S, I, R, L)
• S = set of states
• I = set of initial states
• R in S x S = transition relation
• L: S -> 2^AP = labeling function

• AP: set of atomic propositions
• a proposition is variable x = y
• the labeling function labels each state with the set of true

propositions

4 http://www.cs.colorado.edu/~bec/courses/csci5535-s10/schedule.html

http://www.cs.colorado.edu/~bec/courses/csci5535-s10/schedule.html

Execution Paths

• A path is a sequence of states
• each pair is a transition in R

• Linear time logic (LTL)
• properties defined on a single path

• e.g. path |= F p
• Computation tree logic (CTL)

• path quantifiers
• A: for all paths
• E: there exists a path

• properties defined on states
• state |= AG p

• The expressive powers of LTL and CTL are incomparable

7

Temporal Properties

• Next step
• X p

• is true in the next state
• Invariant

• G p
• is true in a state if p is true

in all subsequent paths
• Eventually

• F p
• is true somewhere on every

path

8

Temporal Properties = Fixpoints

9

• States that satisfy AG(p) are all that are not in EF(not p)
• EF(not p) are states that can reach not p
• Compute EF(not p) as a fixed point

• keep adding to EF(not p) until it converges
• least fixed point
• can be computed

• Use in falsification
• i.e. finding a counter example where the property does not

hold

SMT-based Model Checking

• Satisfiability Modulo Theories
• SAT plus models for numbers and data structures
• based on efficient SAT solvers

• “Carla P. Gomes, Henry Kautz, Ashish Sabharwal, Bart Selman
(2008). "Satisfiability Solvers". In Frank Van Harmelen,
Vladimir Lifschitz, Bruce Porter. Handbook of knowledge
representation. Foundations of Artificial Intelligence 3.
Elsevier. pp. 89–134.”

• Widely used for verification
• bounded memory, good locality (compared to BDD)

10

Generating Data Race Witnesses by an
SMT-based Analysis

Mahmoud Said1, Chao Wang2, Zijiang Yang1, and Karem Sakallah3

1 Western Michigan Univerisity
2 NEC Laboratories America

3 University of Michigan

Abstract. Data race is one of the most dangerous errors in multi-
threaded programming, and despite intensive studies, it remains a no-
torious cause of failures in concurrent systems. Detecting data races,
statically or dynamically, is already a hard problem, and yet it is even
harder for a programmer to decide whether or how a reported data race
can appear in the actual program execution. In this paper we propose
an algorithm for generating debugging aid information called witnesses,
which are concrete thread schedules that can deterministically trigger
the data races. More specifically, given a concrete execution trace of the
program, which may be non-erroneous but have triggered a warning in
Eraser-style data race detectors, we use a symbolic analysis based on
SMT solvers to search for such a witness among alternative interleav-
ings of events of that trace. Our symbolic analysis precisely encodes the
sequential consistency semantics using a scalable predictive model to en-
sure that the reported witness is always feasible.

1 Introduction

A data race occurs in a multithreaded program when two threads access the
same memory location with no ordering constraints enforced in between, and at
least one of the accesses is a write. Programs containing data races are difficult
to debug because they may exhibit different behaviors under the same set of
inputs. Despite that numerous static and dynamic techniques have been devel-
oped in the past decades to detect data races [9, 1, 7, 18, 17, 13, 24, 6, 10], they can
only report data race warnings, often in the form of pairs of program locations.
None of these methods provide witnesses to help the programmers determinis-
tically reproduce the reported data race during actual program executions. In
practice, a single synchronization error caused by data race can take weeks for
programmers to identify [4, 21]. For software platforms using relaxed memory
models, e.g. Java 5.0, it is absolutely crucial to remove all data races in user ap-
plications even if they do not appear to cause logic errors, because these memory
models guarantee sequential consistency only to race-free programs [16]; without
sequential consistency guarantee, it is almost impossible to write multithreaded
user applications due to compiler optimizations such as out-of-order execution.

In this paper we present an algorithm to generate data race witnesses in
multithreaded Java programs based on analyzing a single execution trace. By
witness, here we mean a concrete thread schedule of the program execution that

URCS Seminars & Talks

Department Seminar Series

Wednesday, July 20, 2011
10:00 AM

CSB Room 703

Zijiang James Yang
Western Michigan University

SMT Based Symbolic Analysis for Concurrent Systems

In the first part, I will present an approach to generate data race witnesses by an SMT-based analysis. Data race is one
of the most dangerous errors in concurrent programming, and despite intensive studies, it remains a notorious cause of
failures. Detecting data races, statically or dynamically, is already a hard problem, and yet it is even harder for a
programmer to decide whether or how a reported data race can appear in the actual program execution. In this talk I
will introduce algorithms for generating debugging aid information called witnesses, which are concrete thread schedules
that can deterministically trigger the data races.

Unfortunately due to the complexity of concurrent systems, subtle bugs remains even under the most rigorous testing
and verification. Thus ability to replay a program's execution on a multi-processor system can significantly help
concurrent programming. To replay a shared-memory concurrent program, existing solutions record its program input
and the shared-memory dependencies between threads. In the second part of this talk, I will present a processor-based
record-and-replay solution that does not require detecting and logging shared-memory dependencies to enable multi-
processor execution replay. Shared-memory dependencies between threads are reconstructed offline, during replay,
using an algorithm based on an SMT solver. In addition to saving log space, the proposed solution significantly reduces
the complexity of hardware support required for enabling replay. The proposed approach can support replay of not only
sequentially consistent executions but also executions under relaxed memory models.

Bio: Zijiang James Yang is an Associate Professor of Computer Science at Western Michigan University. Before joining
WMU he was a researcher at NEC Labs America, Inc. He received his Ph.D. from the University of Pennsylvania in 2003.
Dr. Yang was the recipient of the 2008 ACM TODAES best paper award, 2008 WMU CEAS Outstanding Young Researcher
Award, and the 2010 PADTAD best paper award. He holds 9 U.S. patents. Dr. Yang has been a visiting professor at the
University of Michigan since 2009.

Chen Ding <cding@cs.rochester.edu>
To: Faculty Core URCS <faculty-core@cs.rochester.edu>, Grads Student <grads@cs.rochester.edu>, Chen Ding
<compiler@cs.rochester.edu>
program verification seminar this Wednesday

July 16, 2011 7:28 AM

https://cs.wmich.edu/~zijiang/pub/nfm11final.pdf

class Value {
1 private int x = 1;
2 public synchronized void add(Value v) {
3 x = x+v.get();
4 }
5 public int get() {
6 return x;
7 }}
class Task extends Thread {
8 Value v1; Value v2;
9 public Task(Value v1, Value v2) {
10 this.v1 = v1;
11 this.v2 = v2;
12 }

13 public void run() {
14 v1.add(v2);
15 }}
class Main {
16 public static void main (String[] args) {
17 Value a = new Value();
18 Value b = new Value();
19 Thread t2 = new Thread (new Task(a, b));
20 Thread t3 = new Thread (new Task(b, a));
21 t2.start();
22 t3.start();
23 }}

Fig. 1. A Java program with data races.

event is denoted as a pair of the thread index and the line number(s). During
this execution, the shared variable b.x is read by thread t2 at line 6 (aliased as
t2.v1.x) and written by thread t3 at line 3 (aliased as t3.v2.x). However, this
trace is not a witness of data race because the two aforementioned accesses to
b.x are never simultaneously enabled. There exists an alternative interleaving of
the same set of events: . . . (2,13-14), (2,2-3), (2,5), (3,13-14), (3,2), (2,6), (3,3),
(3,5-7), (3,4),(3,15), (2,7), (2,4), (2,15). It is a data race witness because there
exists a state in which the read access by event (2,6) and the write access by
event (3,3) are both enabled. It is guaranteed to be an actual program execution
because both write-read consistency and synchronization consistency

The goal of our symbolic analysis is to search for witnesses among all se-
quentially consistent linearizations of Tπ derived from the concrete execution π.
We formulate the data race witness generation problem as a satisfiability prob-
lem. That is, we construct a quantifier-free first-order logic formula ψπ such that
the formula is satisfiable if and only if there exists a sequentially consistent lin-
earization of Tπ that leads to a state in which two data-conflict events are both
enabled. The formula ψπ is a conjunction of the following subformulas

ψπ := απ ∧ βπ ∧ γπ ∧ ρπ

In Section 3 we present algorithms to encode the partial order (απ), write-read
consistency (βπ), and data race property (ρπ) in first-order logic (FOL) formulas.
In Section 4 we discuss the encoding of synchronization consistency (γπ).

3 Symbolic Encoding of The Write-Read Consistency

3.1 Encoding the Partial Order

Given a multithreaded trace π, let π|t = 〈et1, . . . , etn〉 be a sub-sequence that is a
projection of π onto the thread t. Let t.first and t.last be the first and last event
of thread t in π,i.e., et1 and etn, respectively. For each event e, we introduce an
event order (EO) variable whose value represents its position in a linearization
of Tπ. To ease our presentation, we assume that an EO variable shares the same
unique index with the corresponding event. Therefore oe.idx is the EO variable
for e. Let the number of events be |π|. The domain of oi, where 1 ≤ i ≤ |π|, is
[1..|π|]. Furthermore, we have oi %= oj if i %= j.

class Value {
1 private int x = 1;
2 public synchronized void add(Value v) {
3 x = x+v.get();
4 }
5 public int get() {
6 return x;
7 }}
class Task extends Thread {
8 Value v1; Value v2;
9 public Task(Value v1, Value v2) {
10 this.v1 = v1;
11 this.v2 = v2;
12 }

13 public void run() {
14 v1.add(v2);
15 }}
class Main {
16 public static void main (String[] args) {
17 Value a = new Value();
18 Value b = new Value();
19 Thread t2 = new Thread (new Task(a, b));
20 Thread t3 = new Thread (new Task(b, a));
21 t2.start();
22 t3.start();
23 }}

Fig. 1. A Java program with data races.

event is denoted as a pair of the thread index and the line number(s). During
this execution, the shared variable b.x is read by thread t2 at line 6 (aliased as
t2.v1.x) and written by thread t3 at line 3 (aliased as t3.v2.x). However, this
trace is not a witness of data race because the two aforementioned accesses to
b.x are never simultaneously enabled. There exists an alternative interleaving of
the same set of events: . . . (2,13-14), (2,2-3), (2,5), (3,13-14), (3,2), (2,6), (3,3),
(3,5-7), (3,4),(3,15), (2,7), (2,4), (2,15). It is a data race witness because there
exists a state in which the read access by event (2,6) and the write access by
event (3,3) are both enabled. It is guaranteed to be an actual program execution
because both write-read consistency and synchronization consistency

The goal of our symbolic analysis is to search for witnesses among all se-
quentially consistent linearizations of Tπ derived from the concrete execution π.
We formulate the data race witness generation problem as a satisfiability prob-
lem. That is, we construct a quantifier-free first-order logic formula ψπ such that
the formula is satisfiable if and only if there exists a sequentially consistent lin-
earization of Tπ that leads to a state in which two data-conflict events are both
enabled. The formula ψπ is a conjunction of the following subformulas

ψπ := απ ∧ βπ ∧ γπ ∧ ρπ

In Section 3 we present algorithms to encode the partial order (απ), write-read
consistency (βπ), and data race property (ρπ) in first-order logic (FOL) formulas.
In Section 4 we discuss the encoding of synchronization consistency (γπ).

3 Symbolic Encoding of The Write-Read Consistency

3.1 Encoding the Partial Order

Given a multithreaded trace π, let π|t = 〈et1, . . . , etn〉 be a sub-sequence that is a
projection of π onto the thread t. Let t.first and t.last be the first and last event
of thread t in π,i.e., et1 and etn, respectively. For each event e, we introduce an
event order (EO) variable whose value represents its position in a linearization
of Tπ. To ease our presentation, we assume that an EO variable shares the same
unique index with the corresponding event. Therefore oe.idx is the EO variable
for e. Let the number of events be |π|. The domain of oi, where 1 ≤ i ≤ |π|, is
[1..|π|]. Furthermore, we have oi %= oj if i %= j.

Symbolic Model Checking

• It represents state sets and the transition relation as Boolean
logic formulas

• Fixed point computations manipulate sets of states by
iteratively evaluating these formulas

• Use an efficient data structure
• BDD

14

Binary Decision Diagrams (BDDs)

• Representation of boolean functions
• a set is a function

• Disjunction and conjunction are at most quadratic
• Negation is constant
• Equivalence checking is constant or linear
• Image computation can be exponential

15

