
CSC 255/455

Point-to Analysis

Instructor: Chen Ding

Points-to Analysis

• Problems
• alias, interprocedural

• Variations
• flow sensitivity
• context sensitivity

• Terminology
• Steensgaard and Andersen algorithms
• equality or subset based
• data flow or type based formulation
•set constraint, parallel implementation

• Extensions
• escape analysis, shape analysis

2

Precision and Scalability

• Flow- and context-sensitive
• 1992, Landi and Ryber, 3 KLOC
• 1999, Whaley and Rinard, 80 KLOC

• Flow insensitive but context sensitive
• 2004, Whaley and Lam, 600 KLOC, (based on BDDs)

• Flow- and context-insensitive
• 1996, Steensgaard, 1+ MLOC

• Over a hundred papers published between 1995 and 2005
• Material in this part

• Rayside MIT class report in 2005
• illustrations and citations
• http://www.cs.washington.edu/homes/mernst/teaching/

6.883/lectures/points-to.pdf

3

An Example

Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision

Equality-based Subset-based Flow-sensitive

C
o
n
te

x
t-

in
se

n
si

ti
v
e

• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC

C
o
n
te

x
t-

se
n
si

ti
v
e

• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b

2

Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision

Equality-based Subset-based Flow-sensitive

C
o
n
te

x
t-

in
se

n
si

ti
v
e

• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC

C
o
n
te

x
t-

se
n
si

ti
v
e

• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b

2

Context

Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision

Equality-based Subset-based Flow-sensitive

C
o
n
te

x
t-

in
se

n
si

ti
v
e

• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC

C
o
n
te

x
t-

se
n
si

ti
v
e

• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b

2

Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision

Equality-based Subset-based Flow-sensitive

C
o
n
te

x
t-

in
se

n
si

ti
v
e

• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC

C
o
n
te

x
t-

se
n
si

ti
v
e

• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b

2

Flow-sensitive Analysis by Ryder2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:
x = &a;

x a

y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more e�ort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x
y

b

a

p

collapse a and b

x
y

a
b

p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:

1. x = &a; t1 = ref(t3 �)
2. y = &b; t2 = ref(t4 �)
3. p = &x; t5 = ref(t1 �)
4. p = &y; t5 = ref(t2 �)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 �) = ref(t2 �)

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 �)
• t1 = ref(t4 �)
• t5 = ref(t1 �)

Next we see:

t1 = ref(t3 �) = ref(t4 �)

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 �)
• t5 = ref(t1 �)

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b

3

2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:
x = &a;

x a

y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more e�ort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x
y

b

a

p

collapse a and b

x
y

a
b

p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:

1. x = &a; t1 = ref(t3 �)
2. y = &b; t2 = ref(t4 �)
3. p = &x; t5 = ref(t1 �)
4. p = &y; t5 = ref(t2 �)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 �) = ref(t2 �)

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 �)
• t1 = ref(t4 �)
• t5 = ref(t1 �)

Next we see:

t1 = ref(t3 �) = ref(t4 �)

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 �)
• t5 = ref(t1 �)

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b

3

2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:
x = &a;

x a

y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more e�ort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x
y

b

a

p

collapse a and b

x
y

a
b

p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:

1. x = &a; t1 = ref(t3 �)
2. y = &b; t2 = ref(t4 �)
3. p = &x; t5 = ref(t1 �)
4. p = &y; t5 = ref(t2 �)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 �) = ref(t2 �)

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 �)
• t1 = ref(t4 �)
• t5 = ref(t1 �)

Next we see:

t1 = ref(t3 �) = ref(t4 �)

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 �)
• t5 = ref(t1 �)

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b

3

2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:
x = &a;

x a
y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more e�ort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x
y

b

a

p

collapse a and b

x
y

a
b

p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:
1. x = &a; t1 = ref(t3 �)
2. y = &b; t2 = ref(t4 �)
3. p = &x; t5 = ref(t1 �)
4. p = &y; t5 = ref(t2 �)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 �) = ref(t2 �)

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 �)
• t1 = ref(t4 �)
• t5 = ref(t1 �)

Next we see:

t1 = ref(t3 �) = ref(t4 �)

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 �)
• t5 = ref(t1 �)

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b

3

2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].
First three statements are easy:
x = &a;

x a
y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more e�ort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x
y

b

a
p

collapse a and b

x
y

a
b

p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:
1. x = &a; t1 = ref(t3 �)
2. y = &b; t2 = ref(t4 �)
3. p = &x; t5 = ref(t1 �)
4. p = &y; t5 = ref(t2 �)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 �) = ref(t2 �)

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 �)
• t1 = ref(t4 �)
• t5 = ref(t1 �)

Next we see:

t1 = ref(t3 �) = ref(t4 �)

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 �)
• t5 = ref(t1 �)

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b

3

Equality-based [Steensgaard 1996]

Flow-insensitive

Subset-based
[Andersen’94]

3 Andersen [1] Example [29]

Consider the following program:

1. q = &x;
2. q = &y;
3. p = q;
3. q = &z;

First two statements are easy:

q = &x;

q x1

q = &y;

q

x1

y
2

Third statement. See all the things q points to, and make
p point to them as well. Add in dotted line, to remind us
pts(q) � pts(p).

p = q;

q

x
1

y2 p

3

3

Fourth statement. Add in q ⇥ z edge.

q = &z;

q

x
1

y2

z
4

p

3

3

But dotted line reminds us that pts(q) � pts(p). So we need
to add p⇥ z edge as well. This is the extra work that makes
Andersen’s analysis more expensive. In a Steensgaard style
analysis we would have collapsed x and y at the second
statement, and then we wouldn’t have to worry about this
extra work (although we would lose precision).

q = &z;

q

x
1

y2

z
4 p

3

3

4

Andersen is O(n3).

Steensgaard is said to be equality-based, eg: pts(q) = pts(p).

Acknowledgements

Thanks to Greg Dennis and Rob Seater for discussions.
Thanks to John Whaley for sending me his slides [33].
Thanks to Michael Ernst for sending me to Dagstuhl where
I saw Barbara Ryder’s talk [29].

References

[1] Lars O. Andersen. Program Analysis and Special-
ization of the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, 1994.

[2] Marc Berndl, Ondřej Lhoták, Feng Qian, Lau-
rie Hendren, and Navindra Umanee. Points-
to analysis using BDDs. In Rajiv Gupta, editor,
Proc.PLDI, pages 103–114, June 2003.

[3] Venkatesan T. Chakaravarthy. New results on the
computability and complexity of points-to analysis. In
Greg Morrisett, editor, 30thPOPL, pages 115–125,
New Orleans, Louisiana, January 2003.

[4] Craig Chambers, editor. Proc.PLDI, June 2004.
ISBN 1-58113-807-5.

[5] Jong-Deok Choi, Michael G. Burke, and Paul R.
Carini. E⇤cient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side e�ects. In
20thPOPL, pages 232–245, Charleston, SC, January
1993.

[6] Amer Diwan. CSCI 5535: Homework 4, 1999.
http://www-plan.cs.colorado.edu/diwan/5535-
99/hw4-soln.pdf.

[7] Manuel Fähndrich, Jeffrey S. Foster, Zhen-
dong Su, and Alexander Aiken. Partial online
cycle elimination in inclusion constraint graphs. In
Proc.PLDI, pages 85–96, Montreal, Canada, May 1998.

[8] Manuel Fähndrich, Jakob Rehof, and Manuvir
Das. Scalable context-sensitive flow analysis using in-
stantiation constraints. In Proc.PLDI, pages 253–263,
Vancouver, British Columbia, Canada, June 2000.

[9] John Field and Gregor Snelting, editors.
Proc.ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering
(PASTE), Snowbird, UT, June 2001.

[10] Axel Gross. Evaluation of dynamic points-to analysis,
2004. http://www.complang.tuwien.ac.at/franz/
sem-arbeiten/04w/semWS04 gross 0026934.pdf.

[11] Nevin Heintze and Olivier Tardieu. Ultra-fast
aliasing analysis using CLA: A million lines of C code
in a second. In Mary Lou Soffa, editor, Proc.PLDI,
Snowbird, UT, June 2001.

[12] Michael Hind. Pointer analysis: haven’t we solved
this problem yet? In Field and Snelting [9], pages 54–
61.

[13] Michael Hind and Anthony Pioli. Assessing the
e�ects of flow-sensitivity on pointer alias analyses. In
Proc.International Static Analysis Symposium (SAS),
pages 57–81, 1998.

4

3 Andersen [1] Example [29]

Consider the following program:

1. q = &x;
2. q = &y;
3. p = q;
3. q = &z;

First two statements are easy:

q = &x;

q x1

q = &y;

q

x1

y
2

Third statement. See all the things q points to, and make
p point to them as well. Add in dotted line, to remind us
pts(q) � pts(p).

p = q;

q

x
1

y2 p

3

3

Fourth statement. Add in q ⇥ z edge.

q = &z;

q

x
1

y2

z
4

p

3

3

But dotted line reminds us that pts(q) � pts(p). So we need
to add p⇥ z edge as well. This is the extra work that makes
Andersen’s analysis more expensive. In a Steensgaard style
analysis we would have collapsed x and y at the second
statement, and then we wouldn’t have to worry about this
extra work (although we would lose precision).

q = &z;

q

x
1

y2

z
4 p

3

3

4

Andersen is O(n3).

Steensgaard is said to be equality-based, eg: pts(q) = pts(p).

Acknowledgements

Thanks to Greg Dennis and Rob Seater for discussions.
Thanks to John Whaley for sending me his slides [33].
Thanks to Michael Ernst for sending me to Dagstuhl where
I saw Barbara Ryder’s talk [29].

References

[1] Lars O. Andersen. Program Analysis and Special-
ization of the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, 1994.

[2] Marc Berndl, Ondřej Lhoták, Feng Qian, Lau-
rie Hendren, and Navindra Umanee. Points-
to analysis using BDDs. In Rajiv Gupta, editor,
Proc.PLDI, pages 103–114, June 2003.

[3] Venkatesan T. Chakaravarthy. New results on the
computability and complexity of points-to analysis. In
Greg Morrisett, editor, 30thPOPL, pages 115–125,
New Orleans, Louisiana, January 2003.

[4] Craig Chambers, editor. Proc.PLDI, June 2004.
ISBN 1-58113-807-5.

[5] Jong-Deok Choi, Michael G. Burke, and Paul R.
Carini. E⇤cient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side e�ects. In
20thPOPL, pages 232–245, Charleston, SC, January
1993.

[6] Amer Diwan. CSCI 5535: Homework 4, 1999.
http://www-plan.cs.colorado.edu/diwan/5535-
99/hw4-soln.pdf.

[7] Manuel Fähndrich, Jeffrey S. Foster, Zhen-
dong Su, and Alexander Aiken. Partial online
cycle elimination in inclusion constraint graphs. In
Proc.PLDI, pages 85–96, Montreal, Canada, May 1998.

[8] Manuel Fähndrich, Jakob Rehof, and Manuvir
Das. Scalable context-sensitive flow analysis using in-
stantiation constraints. In Proc.PLDI, pages 253–263,
Vancouver, British Columbia, Canada, June 2000.

[9] John Field and Gregor Snelting, editors.
Proc.ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering
(PASTE), Snowbird, UT, June 2001.

[10] Axel Gross. Evaluation of dynamic points-to analysis,
2004. http://www.complang.tuwien.ac.at/franz/
sem-arbeiten/04w/semWS04 gross 0026934.pdf.

[11] Nevin Heintze and Olivier Tardieu. Ultra-fast
aliasing analysis using CLA: A million lines of C code
in a second. In Mary Lou Soffa, editor, Proc.PLDI,
Snowbird, UT, June 2001.

[12] Michael Hind. Pointer analysis: haven’t we solved
this problem yet? In Field and Snelting [9], pages 54–
61.

[13] Michael Hind and Anthony Pioli. Assessing the
e�ects of flow-sensitivity on pointer alias analyses. In
Proc.International Static Analysis Symposium (SAS),
pages 57–81, 1998.

4

3 Andersen [1] Example [29]

Consider the following program:
1. q = &x;
2. q = &y;
3. p = q;
3. q = &z;

First two statements are easy:
q = &x;

q x1

q = &y;

q
x1

y
2

Third statement. See all the things q points to, and make
p point to them as well. Add in dotted line, to remind uspts(q) � pts(p).

p = q;

q

x
1

y2
p

3

3

Fourth statement. Add in q ⇥ z edge.
q = &z;

q

x
1

y2

z
4

p

3

3

But dotted line reminds us that pts(q) � pts(p). So we needto add p⇥ z edge as well. This is the extra work that makesAndersen’s analysis more expensive. In a Steensgaard styleanalysis we would have collapsed x and y at the secondstatement, and then we wouldn’t have to worry about thisextra work (although we would lose precision).
q = &z;

q

x
1

y2

z
4 p

3

3

4

Andersen is O(n3).

Steensgaard is said to be equality-based, eg: pts(q) = pts(p).

Acknowledgements

Thanks to Greg Dennis and Rob Seater for discussions.Thanks to John Whaley for sending me his slides [33].Thanks to Michael Ernst for sending me to Dagstuhl whereI saw Barbara Ryder’s talk [29].

References

[1] Lars O. Andersen. Program Analysis and Special-
ization of the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, 1994.

[2] Marc Berndl, Ondřej Lhoták, Feng Qian, Lau-
rie Hendren, and Navindra Umanee. Points-
to analysis using BDDs. In Rajiv Gupta, editor,
Proc.PLDI, pages 103–114, June 2003.

[3] Venkatesan T. Chakaravarthy. New results on the
computability and complexity of points-to analysis. In
Greg Morrisett, editor, 30thPOPL, pages 115–125,
New Orleans, Louisiana, January 2003.

[4] Craig Chambers, editor. Proc.PLDI, June 2004.
ISBN 1-58113-807-5.

[5] Jong-Deok Choi, Michael G. Burke, and Paul R.
Carini. E⇤cient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side e�ects. In
20thPOPL, pages 232–245, Charleston, SC, January
1993.

[6] Amer Diwan. CSCI 5535: Homework 4, 1999.
http://www-plan.cs.colorado.edu/diwan/5535-
99/hw4-soln.pdf.

[7] Manuel Fähndrich, Jeffrey S. Foster, Zhen-
dong Su, and Alexander Aiken. Partial online
cycle elimination in inclusion constraint graphs. In
Proc.PLDI, pages 85–96, Montreal, Canada, May 1998.

[8] Manuel Fähndrich, Jakob Rehof, and Manuvir
Das. Scalable context-sensitive flow analysis using in-
stantiation constraints. In Proc.PLDI, pages 253–263,
Vancouver, British Columbia, Canada, June 2000.

[9] John Field and Gregor Snelting, editors.
Proc.ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering
(PASTE), Snowbird, UT, June 2001.

[10] Axel Gross. Evaluation of dynamic points-to analysis,
2004. http://www.complang.tuwien.ac.at/franz/
sem-arbeiten/04w/semWS04 gross 0026934.pdf.

[11] Nevin Heintze and Olivier Tardieu. Ultra-fast
aliasing analysis using CLA: A million lines of C code
in a second. In Mary Lou Soffa, editor, Proc.PLDI,
Snowbird, UT, June 2001.

[12] Michael Hind. Pointer analysis: haven’t we solved
this problem yet? In Field and Snelting [9], pages 54–
61.

[13] Michael Hind and Anthony Pioli. Assessing the
e�ects of flow-sensitivity on pointer alias analyses. In
Proc.International Static Analysis Symposium (SAS),
pages 57–81, 1998.

4

3 Andersen [1] Example [29]

Consider the following program:

1. q = &x;
2. q = &y;
3. p = q;
3. q = &z;

First two statements are easy:

q = &x;

q x1

q = &y;

q

x1

y
2

Third statement. See all the things q points to, and make
p point to them as well. Add in dotted line, to remind us
pts(q) � pts(p).

p = q;

q

x
1

y2 p

3

3

Fourth statement. Add in q ⇥ z edge.

q = &z;

q

x
1

y2

z
4

p

3

3

But dotted line reminds us that pts(q) � pts(p). So we need
to add p⇥ z edge as well. This is the extra work that makes
Andersen’s analysis more expensive. In a Steensgaard style
analysis we would have collapsed x and y at the second
statement, and then we wouldn’t have to worry about this
extra work (although we would lose precision).

q = &z;

q

x
1

y2

z
4 p

3

3

4

Andersen is O(n3).

Steensgaard is said to be equality-based, eg: pts(q) = pts(p).

Acknowledgements

Thanks to Greg Dennis and Rob Seater for discussions.
Thanks to John Whaley for sending me his slides [33].
Thanks to Michael Ernst for sending me to Dagstuhl where
I saw Barbara Ryder’s talk [29].

References

[1] Lars O. Andersen. Program Analysis and Special-
ization of the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, 1994.

[2] Marc Berndl, Ondřej Lhoták, Feng Qian, Lau-
rie Hendren, and Navindra Umanee. Points-
to analysis using BDDs. In Rajiv Gupta, editor,
Proc.PLDI, pages 103–114, June 2003.

[3] Venkatesan T. Chakaravarthy. New results on the
computability and complexity of points-to analysis. In
Greg Morrisett, editor, 30thPOPL, pages 115–125,
New Orleans, Louisiana, January 2003.

[4] Craig Chambers, editor. Proc.PLDI, June 2004.
ISBN 1-58113-807-5.

[5] Jong-Deok Choi, Michael G. Burke, and Paul R.
Carini. E⇤cient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side e�ects. In
20thPOPL, pages 232–245, Charleston, SC, January
1993.

[6] Amer Diwan. CSCI 5535: Homework 4, 1999.
http://www-plan.cs.colorado.edu/diwan/5535-
99/hw4-soln.pdf.

[7] Manuel Fähndrich, Jeffrey S. Foster, Zhen-
dong Su, and Alexander Aiken. Partial online
cycle elimination in inclusion constraint graphs. In
Proc.PLDI, pages 85–96, Montreal, Canada, May 1998.

[8] Manuel Fähndrich, Jakob Rehof, and Manuvir
Das. Scalable context-sensitive flow analysis using in-
stantiation constraints. In Proc.PLDI, pages 253–263,
Vancouver, British Columbia, Canada, June 2000.

[9] John Field and Gregor Snelting, editors.
Proc.ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering
(PASTE), Snowbird, UT, June 2001.

[10] Axel Gross. Evaluation of dynamic points-to analysis,
2004. http://www.complang.tuwien.ac.at/franz/
sem-arbeiten/04w/semWS04 gross 0026934.pdf.

[11] Nevin Heintze and Olivier Tardieu. Ultra-fast
aliasing analysis using CLA: A million lines of C code
in a second. In Mary Lou Soffa, editor, Proc.PLDI,
Snowbird, UT, June 2001.

[12] Michael Hind. Pointer analysis: haven’t we solved
this problem yet? In Field and Snelting [9], pages 54–
61.

[13] Michael Hind and Anthony Pioli. Assessing the
e�ects of flow-sensitivity on pointer alias analyses. In
Proc.International Static Analysis Symposium (SAS),
pages 57–81, 1998.

4

• Should p
point to z
too?

Flow-insensitive subset analysis [Andersen’94]

Type-based Formulation by Diwan

2
Steen

sgaa
rd [31]

Exam
ple

Consider the follo
wing progr

am:

1.
x = &a;

2.
y = &b;

3.
p = &x;

4.
p = &y;

2.1
Intu

itive
form

ulat
ion

[29]

Now
we’ll

con
stru

ct the point
s-to

grap
h for

this progr
am

using the Steen
sgaa

rd approac
h as form

ulate
d by Ryder [29]

.

First
three

stat
ements

are
easy

:

x = &a;
x

a

y = &b;

y

b
x

a

p = &x;

y

b
p

x

a

Last
stat

ement
take

s more
e�ort

to proce
ss:

p = &y;

add edge

p

x

y

a

b

coll
apse x and y

x
y

b

a

p

coll
apse a and b

x
y

a
b

p

Resultin
g point

s-to
grap

h over
-approxi

mates
:

point
s-to

grap
h

p

x

y

a

b

Why do we have
to do this coll

apsing?
It seem

s that the

analys
is would be linear

in the size
of the progr

am
if we

didn’t do coll
apsing. The issu

es is stat
ements

like
a=b

; see

the exam
ple of Anderse

n’s analys
is below

for
why these

in-

trod
uce more

com
plexi

ty.

2.2
Type-ba

sed
form

ulat
ion

[6]

First
we assi

gn each
vari

able its own type:

• x : t1

• y : t2

• a : t3

• b : t4

• p : t5

Then we con
stru

ct the initial
con

stra
ints

:

1.
x = &a;

t1 = ref(t
3 �

)

2.
y = &b;

t2 = ref(t
4 �

)

3.
p = &x;

t5 = ref(t
1 �

)

4.
p = &y;

t5 = ref(t
2 �

)

Now
we solv

e/u
nify the con

stra
ints

. First
we see:

t5 = ref(t
1 �

) = ref(t
2 �

)

So we merge
t1 and t2 into

t1.
The world

look
s like

this:

• x : t1

• y : t1

• a : t3

• b : t4

• p : t5

• t1 = ref(t
3 �

)

• t1 = ref(t
4 �

)

• t5 = ref(t
1 �

)

Next
we see:

t1 = ref(t
3 �

) = ref(t
4 �

)

So we merge
t3 and t4 into

t3.
The world

look
s like

this:

• x : t1

• y : t1

• a : t3

• b : t3

• p : t5

• t1 = ref(t
3 �

)

• t5 = ref(t
1 �

)

We’re
done solv

ing. The stor
age

shape grap
h is:

t5

t1

t3

If we exp
and that to a point

s-to
grap

h we get:

p

x

y

a

b

3

2
Ste

ens
gaa

rd
[31

] Exam
ple

Cons
ide

r the
foll

ow
ing

pro
gra

m:

1.
x = &a;

2.
y = &b;

3.
p = &x;

4.
p = &y;

2.1
Int

uit
ive

for
mula

tio
n [29

]

Now
we’ll

con
str

uct
the

poin
ts-t

o gra
ph

for
thi

s pro
gra

m

usi
ng

the
Ste

ens
gaa

rd
app

roa
ch

as
for

mula
ted

by
Ryde

r [29
].

First
thr

ee
sta

tem
ent

s are
eas

y:

x = &a;

x

a

y = &b;

y

bx

a

p = &x; y

bp

x

a

Last
sta

tem
ent

tak
es

more
e�ort

to
pro

ces
s:

p = &y;

add
edg

e

p

x

y

a

b

col
lap

se
x and

y

x
y

b

a

p

col
lap

se
a and

b

x
y

a
b

p

Resu
ltin

g poin
ts-t

o gra
ph

ove
r-a

ppr
oxi

mate
s:

poin
ts-t

o gra
ph

p

x

y

a

b

Why
do

we hav
e to

do
thi

s col
lap

sin
g?

It
see

ms tha
t the

ana
lys

is
woul

d be line
ar

in
the

size
of

the
pro

gra
m

if we

did
n’t

do
col

lap
sin

g.
The

issu
es

is sta
tem

ent
s like

a=b
; see

the
exa

mple
of

Ande
rse

n’s
ana

lys
is belo

w for
why

the
se

in-

tro
duc

e more
com

ple
xit

y.

2.2
Type

-ba
sed

for
mula

tio
n [6]

First
we ass

ign
eac

h var
iab

le its
ow

n typ
e:

• x : t1

• y : t2

• a : t3

• b : t4

• p : t5

Then
we con

str
uct

the
init

ial
con

str
ain

ts:

1.
x = &a;

t1 = ref(
t3�

)

2.
y = &b;

t2 = ref(
t4�

)

3.
p = &x;

t5 = ref(
t1�

)

4.
p = &y;

t5 = ref(
t2�

)

Now
we sol

ve/
uni

fy
the

con
str

ain
ts.

First
we see

:

t5 = ref(
t1�

) = ref(
t2�

)

So
we merg

e t1
and

t2
int

o t1.
The

worl
d loo

ks
like

thi
s:

• x : t1

• y : t1

• a : t3

• b : t4

• p : t5

• t1 = ref(
t3�

)

• t1 = ref(
t4�

)

• t5 = ref(
t1�

)

Next
we see

:

t1 = ref(
t3�

) = ref(
t4�

)

So
we merg

e t3
and

t4
int

o t3.
The

worl
d loo

ks
like

thi
s:

• x : t1

• y : t1

• a : t3

• b : t3

• p : t5

• t1 = ref(
t3�

)

• t5 = ref(
t1�

)

We’re
don

e sol
vin

g.
The

sto
rag

e sha
pe gra

ph
is:

t5

t1

t3

If we exp
and

tha
t to

a poin
ts-t

o gra
ph

we get
:

p

x

y

a

b

3

2
St

ee
nsg

aa
rd

[31
] Ex

am
ple

Con
sid

er
the

fol
low

ing
pro

gra
m:

1.
x
=
&a
;

2.
y
=
&b
;

3.
p
=
&x
;

4.
p
=
&y
;

2.1
Int

uit
ive

for
mula

tio
n [29

]

Now
we’l

l con
str

uc
t the

po
int

s-t
o

gra
ph

for
thi

s pro
gra

m

usi
ng

the
Ste

en
sga

ard
ap

pro
ach

as
for

mula
ted

by
Ryd

er
[29

].

Firs
t thr

ee
sta

tem
en

ts
are

eas
y:

x
=
&a
;

x

a

y
=
&b
;

y

bx

a

p
=
&x
;

y

bp

x

a

Last
sta

tem
en

t tak
es

more
e�

ort
to

pro
ces

s:

p
=
&y
;

ad
d ed

ge

p

x

y

a

b

col
lap

se
x an

d y

x
y

b

a

p

col
lap

se
a an

d b

x
y

a
b

p

Resu
ltin

g po
int

s-t
o gra

ph
ov

er-
ap

pro
xim

ate
s:

po
int

s-t
o gra

ph

p

x

y

a

b

W
hy

do
we ha

ve
to

do
thi

s col
lap

sin
g?

It
see

ms tha
t the

an
aly

sis
wou

ld
be

lin
ear

in
the

siz
e of

the
pro

gra
m

if
we

did
n’t

do
col

lap
sin

g.
The

iss
ue

s is
sta

tem
en

ts
lik

e a
=b
; see

the
ex

am
ple

of
And

ers
en

’s
an

aly
sis

be
low

for
why

the
se

in-

tro
du

ce
more

com
ple

xit
y.

2.2
Ty

pe
-ba

sed
for

mula
tio

n [6]

Firs
t we ass

ign
eac

h va
ria

ble
its

ow
n typ

e:

• x : t1

• y : t2

• a : t3

• b : t4

• p : t5

The
n we con

str
uc

t the
ini

tia
l con

str
ain

ts:

1.
x
=
&a
;

t1
=

ref
(t3
�

)

2.
y
=
&b
;

t2
=

ref
(t4
�

)

3.
p
=
&x
;

t5
=

ref
(t1
�

)

4.
p
=
&y
;

t5
=

ref
(t2
�

)

Now
we sol

ve/
un

ify
the

con
str

ain
ts.

Firs
t we see

:

t5
=

ref
(t1
�

) =
ref

(t2
�

)

So
we merg

e t1
an

d t2
int

o t1.
The

worl
d loo

ks
lik

e thi
s:

• x : t1

• y : t1

• a : t3

• b : t4

• p : t5

• t1
=

ref
(t3
�

)

• t1
=

ref
(t4
�

)

• t5
=

ref
(t1
�

)

Nex
t we see

:
t1

=
ref

(t3
�

) =
ref

(t4
�

)

So
we merg

e t3
an

d t4
int

o t3.
The

worl
d loo

ks
lik

e thi
s:

• x : t1

• y : t1

• a : t3

• b : t3

• p : t5

• t1
=

ref
(t3
�

)

• t5
=

ref
(t1
�

)

We’r
e do

ne
sol

vin
g.

The
sto

rag
e sha

pe
gra

ph
is:

t5

t1

t3

If
we ex

pa
nd

tha
t to

a po
int

s-t
o gra

ph
we get

:

p

x

y

a

b

3

2
Steensgaard [31] Example

Consider the following program:

1.
x = &a;

2.
y = &b;

3.
p = &x;

4.
p = &y;2.1

Intuitive formulation [29]

Now
we’ll construct the points-to graph for this program

using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:

x = &a;

x

a

y = &b;

y

b

x

a

p = &x;

y

b

p

x

a

Last statement takes more e�ort to process:

p = &y;

add edge

p
x

y a

b

collapse x and y

x
y

b

a

pcollapse a and b

x
y

a
b

p

Resulting points-to graph over-approximates:

points-to graph p
x

y a

b

Why do we have to do this collapsing?
It seems that the

analysis would be linear in the size of the program
if we

didn’t do collapsing. The issues is statements like a=b; see

the example of Andersen’s analysis below for why these in-

troduce more complexity.

2.2
Type-based formulation [6]

First we assign each variable its own type:

•
x : t1

•
y : t2

•
a : t3

•
b : t4

•
p : t5Then we construct the initial constraints:

1.
x = &a;

t1 = ref(t3 �
)

2.
y = &b;

t2 = ref(t4 �
)

3.
p = &x;

t5 = ref(t1 �
)

4.
p = &y;

t5 = ref(t2 �
)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 �
) = ref(t2 �

)

So we merge t1 and t2 into t1 . The world looks like this:

•
x : t1

•
y : t1

•
a : t3

•
b : t4

•
p : t5

• t1 = ref(t3 �
)

• t1 = ref(t4 �
)

• t5 = ref(t1 �
)

Next we see:

t1 = ref(t3 �
) = ref(t4 �

)

So we merge t3 and t4 into t3 . The world looks like this:

•
x : t1

•
y : t1

•
a : t3

•
b : t3

•
p : t5

• t1 = ref(t3 �
)

• t5 = ref(t1 �
)

We’re done solving. The storage shape graph is:

t5

t1

t3

If we expand that to a points-to graph we get:

p
x

y a

b

3

2 Steensgaard [31] Example

Consider the following program:

1. x = &a;
2. y = &b;
3. p = &x;
4. p = &y;

2.1 Intuitive formulation [29]

Now we’ll construct the points-to graph for this program
using the Steensgaard approach as formulated by Ryder [29].

First three statements are easy:
x = &a;

x a

y = &b;

y b

x a

p = &x;

y b

p x a

Last statement takes more e�ort to process:
p = &y;

add edge

p

x

y

a

b

collapse x and y

x
y

b

a

p

collapse a and b

x
y

a
b

p

Resulting points-to graph over-approximates:

points-to graph

p

x

y

a

b

Why do we have to do this collapsing? It seems that the
analysis would be linear in the size of the program if we
didn’t do collapsing. The issues is statements like a=b; see
the example of Andersen’s analysis below for why these in-
troduce more complexity.

2.2 Type-based formulation [6]

First we assign each variable its own type:

• x : t1
• y : t2
• a : t3
• b : t4
• p : t5

Then we construct the initial constraints:

1. x = &a; t1 = ref(t3 �)
2. y = &b; t2 = ref(t4 �)
3. p = &x; t5 = ref(t1 �)
4. p = &y; t5 = ref(t2 �)

Now we solve/unify the constraints. First we see:

t5 = ref(t1 �) = ref(t2 �)

So we merge t1 and t2 into t1. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t4
• p : t5
• t1 = ref(t3 �)
• t1 = ref(t4 �)
• t5 = ref(t1 �)

Next we see:

t1 = ref(t3 �) = ref(t4 �)

So we merge t3 and t4 into t3. The world looks like this:

• x : t1
• y : t1
• a : t3
• b : t3
• p : t5
• t1 = ref(t3 �)
• t5 = ref(t1 �)

We’re done solving. The storage shape graph is:

t5 t1 t3

If we expand that to a points-to graph we get:

p

x

y

a

b

3

Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision

Equality-based Subset-based Flow-sensitive

C
o
n
te

x
t-

in
se

n
si

ti
v
e

• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC

C
o
n
te

x
t-

se
n
si

ti
v
e

• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b

2

Figure 1 A Brief History of Pointer Analysis [33] — focus on scalability and precision

Equality-based Subset-based Flow-sensitive

C
o
n
te

x
t-

in
se

n
si

ti
v
e

• Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

• Steensgaard [31]
1996: 1+ MLOC
first scalable pointer analysis

• Andersen [1]
1994: 5 KLOC

• Fähndrich et al. [7]
1998: 60 KLOC

• Heintze and Tardieu [11]
2001: 1 MLOC

• Berndl et al. [2]
2003: 500 KLOC
first to use BDDs

• Choi et al. [5]
1993: 30 KLOC

C
o
n
te

x
t-

se
n
si

ti
v
e

• Fähndrich et al. [8]
2000: 200K

• Whaley and Lam [35]
2004: 600 KLOC
cloning-based BDDs

• Landi and Ryder [19]
1992: 3 KLOC

• Wilson and Lam [37]
1995: 30 KLOC

• Whaley and Rinard [36]
1999: 80 KLOC

Horwitz [16]: Even flow-insensitive problem is NP-hard

Chakaravarthy [3]: Cannot even get a good approximation
(within a constant factor) unless P=NP

1.2 Axes of Precision

less precise more precise
equivalence subset/inclusion

flow-insensitive flow-sensitive
context-insensitive context-sensitive

Consider the following example [33]:

p = malloc();
q = malloc();
fp = &p;
fp = &q;
... = *fp;

What does the points-to graph look like at the end of the
snippet? Depends on what analysis you do:

flow-insensitive,
equality-based, eg
Steensgaard [31]

p

q

heap1

heap2
fp

flow-insensitive,
subset-based, eg
Andersen [1]

fp

p

q

heap1

heap2

flow-sensitive

fp

p

q

heap1

heap2

Another example, for context-sensitivity [33]:

id (x) { return x; }
foo() {

a = malloc();
a = id(a);

}
bar() {

b = malloc();
b = id(b);

}

dotted lines are
spurious edges
added by context-
insensitivity

a heap1

heap2b

2

