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Abstract

Interfaces between hot and cold magnetized plasmas exist in various astrophysical
contexts, for example where hot outflows impinge on an ambient interstellar medium
(ISM). It is of interest to understand how the structure of the magnetic field spanning
the interface affects the temporal evolution of the temperature gradient. Here we
explore the relation between the magnetic field topology and the heat transfer rate
by adding various fractions of tangled vs. ordered field across a hot-cold interface
allow the system to evolve to a steady state. We find a simple mathematical relation
for the rate of heat conduction as a function of the initial ratio of ordered to tangled
field across the interface. We discuss potential implications for the astrophysical
context of magnetized wind blown bubbles (WBB) around evolved stars.

We study the interaction of strong shock waves with magnetized clumps. Pre-
vious numerical work focused on the simplified scenario in which shocked clumps
are immersed in a globally uniform magnetic field that extends through both the
clump and the ambient medium. Here we consider the complementary circumstance
in which the field is completely self-contained within the clumps. This could arise
naturally during clump formation via dynamical or thermal instabilities for example
as magnetic field pinches off from the ambient medium. Using our AMR MHD code
AstroBEAR, we carry out a series of simulations with magnetized clumps that have
different self-contained magnetic field configurations. We find that the clump and
magnetic evolution are sensitive to the fraction of magnetic field aligned with versus
perpendicular to the shock normal. The relative strength of magnetic pressure and

tension in the different field configurations allows us to analytically understand the
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different cases of post-shock evolution. We also show how turbulence and the mixing
it implies depends of the initial field configuration and suggest ways in which ob-
served shock-clump morphology may be used as a proxy for identifying internal field
topologies a posteriori.

Star formation can be triggered by compression from wind or supernova driven
shock waves that sweep over molecular clouds. Because these shocks will likely con-
tain processed elements, triggered star formation has been proposed as an explanation
for short lived radioactive isotopes (SLRI) in the Solar System. Previous studies have
tracked the triggering event to the earliest phases of collapse and have focused on the
shock properties required for both successful star formation and mixing of SLRI’s. In
this paper, we use Adaptive Mesh Refinement (AMR) simulation methods, includ-
ing sink particles, to simulate the full collapse and subsequent evolution of a stable
Bonnor-Ebert sphere subjected to a shock and post-shock wind. We track the flow of
the cloud material after a star (a sink particle) has formed. For non-rotating clouds
we find robust triggered collapse and little bound circumstellar material remaining
around the post-shock collapsed core. When we add initial cloud rotation we observe
the formation of disks around the collapsed core which then interact with the post-
shock flow. Our results indicate that these circumstellar disks are massive enough to
form planets and are long-lived, in spite of the ablation driven by post-shock flow ram
pressure. As a function of the initial conditions, we also track the time evolution of
the accretion rates and particle mixing between between the ambient wind and cloud

material. The latter is maximized for cases of highest mach number.
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Chapter 1
Introduction

Supersonic flows are common throughout the universe, and the shock waves they
produce play key roles in shaping the structure and evolution of astronomical objects
on both large and small scales. Magnetic field, as well as other multiphysics pro-
cesses such as radiative cooling and heat conduction, are important in determining
the forming and the evolution of structures such as hot-cold interfaces, clumps and
jets. Blast wave from supernova is believed to be powering the forming of star clus-
ters such as Eta Carinae, Cygnus loop, and so on. For interstellar flows, it is usually
the case that the flow itself carries complicated density, temperature and magnetic
structures. For instance, radiative cooling results in fragmented shells in supernova
blast wave that is considerably colder and denser than the wind behind it, interstel-
lar shocks travelling through clumpy regions in a molecular cloud carry with them
density inhomogeneities in the form of clumps with inherent magnetic field structure
on the length scales comparable or smaller than that of the clumps. These flows can
be named in general as intersetellar heterogeneous flows because of their structural
inhomogeneity. It is important to study these flows numerically as they result in
numerous observable phenomena that give clue to many grand challenge problems
of astrophysics. One example being the observed structures of young stellar objects
(YSO), another being star formation efficiency of shock triggered star forming region.

The computational astrophysics group at University of Rochester has developed a

parallel MHD code AstroBEAR with adaptive mesh refinement (AMR), which allows



efficient distribution of computation resources to resolve most desired features from
an Eulerian grid simulation. As part of the thesis work involves developing features
for AstroBEAR, in chapter 2, we briefly walkthrough the key features developed that
will be used in the simulations presented in later chapters. It has been the recent
trend to look into multiphysics details of complex processes in the field of numerical
astrophysics. Many important problems have demonstrated themselves to be only
meaningful when such physics processes beside ideal MHD are considered. One ex-
ample being the star formation problem in which the self gravitational force of the
interstellar gas is essential to allow collapse to happen. In AstroBEAR, we model
various multiphysics processes using operator-splitting method: a method in which
the multiphysics solver is separated from the ideal MHD solver. Chapter 2 gives
an indepth look into the multiphysics components of AstroBEAR: section 2.2 dis-
cusses cooling and heating effects, section 2.3 discusses self gravity and sink particle,
section 2.4 discusses resistivity in non-ideal MHD.

In this thesis, we harness the power of the parallel AMR MHD capability of
AstroBEAR, to study some of the properties of heterogeneous flows of interest. One
of such problem is the thermal conduction through interfaces between hot and cold
plasmas. The motivating example of such an object occurs in wind blown bubbles
(WBB) of evolved stars where magnetized hot supersonic outflow shock heats the
cooler ambient magnetized interstellar medium. In such a scenario, the heat flow
carried by the electrons are usually confined to be only along the magnetic field
lines due to the relatively small electron gyro-radius with respect to the electron
mean free path. Such heat flux regulated by magnetic field may be used to explain
the lower than expected shell temperature from observations such as Zhekov et al
1998 and Imamura et al 2000. Zhekov et al 2000 has done pioneering work on the
subject of WBB heating, as they found the heating rate of the WBB shell under
spherical symmetric hydrodynamics simulations to be higher than expected. However,
as evidenced by previous research such as Blackman et al 2009, magnetized gas has
considerably different heating property based on the regulated heat conduction. It is
then possible to explain the low heat transfer efficiency between the cold shell and

the hot reservoir by including magnetic field.



A second example is the unexpected slow mass deposition rate of the cooling flows
in some galaxy cores which might be inhibited by a restricted thermal conduction
(Rosner & Tucker (1989), Balbus & Reynolds (2008), Mikellides et al. (2011)). In
the intracluster medium (ICM), the tangled magnetic field can potentially produce a
strongly anistropic thermal conductivity that may significantly influence temperature
and density profiles (Chandran & Maron (2004); Maron et al. (2004); Narayan &
Medvedev (2001), Mikellides et al. (2011)).

In our WBB study, we set up simulations of hot bubble-cold shell with tangled
magnetic field that has a length scale smaller than that of the interface itself. We
focus on the impact of magnetic field regulation on the heat flux, and the possibility
of a slow-down effect on the heating of the shell as a result of magnetic field geometry.
The thermal conduction solver is described in detail in Section 2.2, the test for ther-
mal conduction solver is discussed in Section 3.1. The thermal conduction through
magnetized hot cold interfaces as those in WBB is discussed in chapter 4.

Within our own galaxy, matter overabundances are found in molecular clouds, and
within these clouds matter further is distributed unevenly in the star-forming regions
known as molecular cloud cores. Clumps of material exist on smaller scales as well.
This heterogeneous distribution of matter is required, of course, for star and planet
formation. On the other hand, energetic sources such as YSOs, planetary nebulae
(PNe), and supernovae inject kinetic energy back into their environments in the form
of winds, jets, and shocks. On larger cosmological scales galaxies are clustered im-
plying the early evolution of the Universe involved heterogeneous or ”clumpy” flows
as well. The central regions of active galaxies with their supermassive blackholes are
also expected to be home to extensive regions of heterogeneous density distributions
with strong incident winds and shocks. Thus understanding how the former (clumps)
and latter (winds, jets, and shocks) interact remains a central problem for astro-
physics. Since dynamically significant magnetic fields are expected to thread much of
the plasma in the interstellar and intergalactic medium the role of magnetic forces on
shock clump interactions is also of considerable interest. Earlier studies have focused
on the problem of uniform magnetic field extending through the entire space, where

magnetic field is found to be important in determining the shocked morphology of the



clumps as in Maclow et al 1994, Jones et al 1996. However, magnetic field with length
scale comparable to the clumps are observed in many situations, Herbig-Haro (HH)
objects for instance, are believed to contain non-uniform, tangled magnetic field on
small length scale. Furthermore, the magnetized clump objects can now be produced
in laboratory astrophysics (Lebedev et al 2012), as the lab astrophysical magnetized
jets produced on MAGPIE contains small scale clumpy regions, whose mechanism is
related to magnetic tower launching (Huarte-Espinosa et al 2012, Lebedev et al 2012).
The magnetic structure inside the clump can significantly change the evolution of the
shocked behavior compared to the uniform field cases: as the stretch of the uniform
field plays a key role in determining the shocked clump morphology, such stretch may
not be present in the contained field scenario. The uniform field studies also over-
simplifies the importance of the field geometry inside the clump. Intuitively, simple
confined magnetic field configurations as pure toroidal or poloidal give significantly
different field pressure and tension distribution throughout the clump, which will
likely alter the response to the incoming shock. In chapter 5, we present simulations
with various magnetic field geometry contained inside the clump, with mathematical
models that help us predict the shocked behavior of such magnetized clumps.

The problem of star formation is one of the grand challenge problems in theoretical
astrophysics. Stars can be formed from a variety of mechanism, such as gravitational
instabilies in molecular cloud. Omne of such mechanism is shock triggering: when
shock from a supernova blast wave or AGB wind runs through globules that are
otherwise in gravitational hydrodynamic equilibrium, collapse can be triggered by
the compression from shock (Boss et al 1998). The shock triggering mechanism has
one key consequence different from instability triggering, as it allows exotic elements
processed through supernova blast to be injected into the formed star and its stellar
surroundings. This opens opportunity to explain the relatively high dilution ratio
(defined as the observed element number density) of short-lived radiactive isotropes
(SLRI) found in the Solar System: about 1072 in terms of dilution ratio according to
observational studies such as Takahashi et al 2008. It is not realistic to expect such
high dilution ratio can be entirely self-produced through collapse mechanism such

as gravitational instabilities. However, if triggered star formation is assumed, it is
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possible to trigger the collapse of a globule of about 1M, to form a star while injecting
exotic material from the post shock wind at the same time. Boss et al 2008 and Boss
et al 2010 have studied the requirement of the shock speed and thickness to allow such
collapse and injection to happen at the same time. The most important conclusion
from their series of studies on this subject is that when shock speed and thickness
are “correctly tuned”, the successful triggering and injection can happen at the same
time. In their previous studies, Boss et al do not follow the evolution of collapse till
the formation of the star. Such subsequent evolution can be important especially if
one wants to answer the question of whether disk formation is possible in a triggered
scenario, as well as how much post shock material can be injected into the disk.
Another unanswered question is the importance of the structure of the blast wave
as the shock-wind structure used in the series of papers by Boss et al are not what
people expect from theoretical studies on supernova blast wave structures. Finally,
the importance of the magnetic field in such scenario is almost entirely new territory.
It is intuitively more plausible to consider MHD instead of pure hydrodynamics as
the shocked globules are likely highly magnetized. In section 2.3, we present the self
gravity and sink particle treatment in AstroBEAR. In section 3.2, we present the
numerical tests for self gravity and sink particle solvers. In chapter 6, we use the sink
particle capability of AstroBEAR2.0 to study for the first time the shock-induced
triggering of a stable Bonnor-Ebert cloud following the long-term evolution of the
flow after a star has formed. We confirm that under certain shock conditions, star
can be formed during such triggering. We track the subsequent flow pattern after the
triggering event, and demonstrate that with initial clump rotation, disk formation is
possible during triggering.

Laboratory astrophysics has become an integral part of astrophysics study. Re-
searchers are now able to produce targets in laboratory environments that are scalable
to real astrophysics objects, such as stellar jets and accretion disks (Lebedev et al
2010). The shock-clump interaction model has become one of the showcasing prob-
lem in lab astrophysics because of its broad relevance: many important problems can
be casted as a shock-clump interaction problem. The shock-clump problem spawns

many subproblems which can be readily studied in the lab by changing the setup or



target, such as the shocked behavior of multiple clumps (Hartigan et al 2009), the
importance of magnetic fields (Hartigan et al 2013), the shocked behavior of pillars,
and so on. Such laboratory efforts tie back to many numerical studies on shocked
clumps that can be traced back to the 1970s (refs here). Our group collaborates with
Lab of Laser Energetics (LLE) to explore the problem of magnetized shock-clump
interaction on both experimental and numerical fronts. Magnetic fields generated in
the MIFEDS system have now reached a strength where fields in the postshock gas
should be strong enough to influence the flow dynamics. Experiments of shocked
magnetized clumps at LLE will open the door to this complex, exciting, and astro-
physicallyrelevant world of magnetized shocks by providing the first important tests
of both experimental and astrophysical numerical codes in the 3-D MHD regime. In
order to relate the MHD shock-clump simulations to the experiments, one significant
drawback of the existing numerical simulations on MHD shocked clumps is that the
resistivity is not taken into consideration. While this may be a valid assumption
under astrophysical environments as the magnetic Reynolds number R, = VL/n,
where V' and L are the typical flow speed and length scale, and 7 is the magnetic
diffusivity, satisfies R,, > 1 as the length scale is large. In addition, in the as-
trophysical enviroment of shock-clump interaction, the post shock flow is usually in
very high temperature region which renders n extremely low based on Spitzer rela-
tion n oc T—3/2. However, the laboratory astrophysics usually involves resistivity of
the instruments/plasma that cannot be ignored under a much smaller length scale.
While there have been numerous studies that implements multiphysics processes in
such MHD problem, such as Fragile et al 2005 with radiative cooling, Orlando et al
2010 with thermal conduction, there has been no previous study that explores the
effects of magnetic diffusion. To tackle the problem of non-ideal MHD shock-clump
interaction, and to provide guidance to the design of lab instrumentation, we have
run simulations on 3-D MHD clumps with global uniform magnetic field with both
ideal and resistive MHD (non-trivial magnetic Reynolds number) and demonstrated
that the resistivity is indeed an important factor when designing such an experiment.
The resistive solver is one of the key multiphysics components of AstroBEAR. We

have done Sweet-Parker problem and magnetic island formation problem to demon-



strate it’s working in AMR (Section 3.3). The resistive MHD solver is described in
section 2.4, the Sweet-Parker test of AstroBEAR is discussed in chapter 3.3 and the

non-ideal MHD shock-clump interaction simulations are presented in chapter 7.



Chapter 2

AstroBEAR: Parallel MHD Code
with Adaptive Mesh Refinement
and Multiphysics

2.1 Brief Introduction of AstroBEAR

For simulations discussed in this thesis work, we use the AstroBEAR 2.0 code, de-
veloped in-house by the computational astrophysics group. AstroBEAR is a magneto-
hydrodynamics code with multi-physics capabilities that include self-gravity, non-
ideal equation of state (EOS), and micro-physics such as heat conduction, resistivity
and radiation transfer. AstroBEAR is parallelized to run on modern architectures
with dedicated resources for scientific computing. AstroBEAR has shown excellent
scaling up to tens of thousands of processors on major computation clusters since
version 2.0, and has been featured as core part in many research papers published
by the group as well as its collaborators. As the computational aspect comprises an
integral part of the thesis research, we present here some of the key features that are
developed for version 2.0 that are used in the thesis research.

Adaptive Mesh Refinement (AMR), has become increasingly important in compu-
tational astrophysics nowadays. AMR allows researchers to vary resolution (number

of computation zones per unit length) in one computation grid, thus able to focus



resources on points of interest. This allows a much greater dynamic range for the
computation than fixed grid: for example, in star formation simulation, one may
have a star formation simulation that has hundreds of stars formed in one compu-
tation grid while still have high enough resolution around the vicinity of each star
to resolve accretion flow. In shock-clump simulations, one may have highly resolved
clump surface and downstream instability pattern while keep the total running time
reasonable.

The AstroBEAR code is a parallel AMR Eulerian hydrodynamics code with ca-
pabilities for MHD in two- and three-dimensions. Further details on AstroBEAR
may be found in Cunningham et al (2009), Carroll-Nellenback et al (2013) and
at https://clover.pas.rochester.edu/trac/astrobear. Besides the several schemes of
varying order available for the user to solve the ideal MHD equations, it also employs
implicit and explicit matrix solvers to solve multiphysics problems such as self gravity
and heat conduction by operator splitting.

For the ideal MHD, AstroBEAR solves the following equations based on exact
or approximate Riemann solver based on user choice, with second or third order
reconstruction scheme such as Godunov method or piecewise linear method, along

with constrained transport to enforce divergence free condition:
dp

% +V.-(pv)=0, (2.1)
d(pv) B? BB,
5 +V - [pvv+ (p+ 87r)I ™ |=0, (2.2)
aa—]?—i—VX(va):O, (2.3)
OF B2 B(B-v)

where p, n, v, B and p are the density, particle number density, velocity, magnetic
field, and pressure, and E denotes the total energy density given by
v-v B-B
E=¢e+p—+——, 2.5
TPy T g (2:5)

where the internal energy € is given by

€= —— (2.6)



For the simulations presented in this thesis, we choose to solve the fluid equations with
the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) primitive
method using TVD (Total Variation Diminishing) preserving Runge-Kutta temporal
interpolation. The magnetic field equation is solved on the basis of electromotive
force (emf) and subject to constrained-transport algorithm to keep the divergence-

free property.

2.2 Multiphysics: Radiative Cooling and Thermal

Conduction

The energy equation in the previous section maybe modified when cooling or
heating process is involved. With radiative cooling, the energy equation 2.4 should

change to the following form:

OF B? B(B-V)
§+V'[V(E+p+8_7r)_8—7r

| = A(n,T) =0, (2.7)
We denote the radiative cooling by a function of number density and temperature:
A(p,T). In our simulations, we implement the Dalgarno McCray cooling table as it
is more realistic comparing to simple analytic cooling functions [Dalgarno & McCray
(1972)]. The gas is allowed to cool to a floor temperature and then cooling is turned
off. For chapter 5, we define our parameter regime as “weakly cooling” so that
the region inside the clump can get cooled and hold up together but the dynamics
will be mostly come from the interaction between the incoming shock and the self-
contained magnetic field. This means that we require the cooling time scale behind
the transmitted shock to be smaller than the clump crushing time scale by a factor of
less than 10. As we are more interested in the dynamics of the interaction mentioned
above, the employment of a different cooling table or cooling floor temperature will
result in similar conclusions if the “weakly cooling” assumption is maintained.

With thermal conduction, we assume that the heat flux is confined to be parallel
to the magnetic field lines. This assumption applies only when the ratio of electron

gyro-radius to field gradient scales is small. Under this assumption, the heat flux

10



parallel to field lines can be written as
Q = —HH(VT)H, (28)

where the subscript || indicates parallel to the magnetic field, and « is the classical
Spitzer heat conductivity: x| = k.T?°, with k. =2 x 107 em s gt K~%°. We take
K| to be a constant throughout our simulations and so hereafter write it simply as .

With the added thermal conduction, we change the energy equation to the following

form: ,

oF B B(B-v)

- - [v(E _—) - Q= 2.

AV ME+pt ) -V Q=0 29)
In the implicit solver, we convert equation 2.7 to an operator splitted form on tem-
perature:

oT
nk;BE%—V-Q:O, (2.10)

where number density n is assumed to be time independent during the implicit ther-
mal conduction step. Note that from equation 2.8, we know that equation 3.5 can
be solved by finite differencing to obtain a temperature distribution 7'(x,t). The
difficulty in explicit solver mainly comes from the fact that ) depends on the second
order differentiation of T', which results in a dependence of At oc Az? from stability
requirement: the explicit time step is a quadratic function on the grid resolution.
This leads to unreasonably small time steps for simulations with high resolutions.
For the implicit solver, however, we modify the stability requirement to a physical
requirement since it is unconditionally stable numerically: At oc (VQ)™! where VQ
can be computed on each zone face. The physical requirement constrains the sim-
ulation code to take cautious time steps so that change of temperature gradient is
properly resolved.

For constant heat conduction as used in chapter 4, equation 3.5 can be solved by
turning it directly into the finite difference form, and compute the matrix as well as
the right hand side vector elements. The matrix and the right hand side vector is
then input into the linear solver package HYPRE, to obtain a solution under certain

numerical tolerance (107° for the simulations presented in chapter 4).
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Nonlinear heat conduction where k = T2%, it is impossible to turn equation 3.5
into a linear system without approximations. In AstroBEAR, we implement Crank-
Nicholsson scheme in which any nonlinear function in 7" is turned into a linear function
by Taylor expanding such function to the first order. The unknown 7" only appears in
linear term after the approximation, while its Taylor coefficients may involve nonlinear

terms of T" from a previous time step.

2.3 Multiphysics: Self Gravity and Sink Particles

With self-gravity, the momentum and energy equations 2.2 and 2.4 change to the

following form:

d(pv) B? BB

ey +V - [pvv+ (p+ 8—7)1 - E] = —pVo, (2.11)
oF B? BB-v),
E+V'[V(E+p+8—ﬂ_)—8—ﬂ_]——,0V'v¢, (2.12)

where ¢ denotes the gravitational potential of the gas. At each step of simulation,

we solve ¢ based on the source function from the density distribution:
V3¢ = 4nGp. (2.13)

¢ is then fed into equations ?? and 7?7 as an external source term. Equation 2.13
is solved implicitly using linear solver package HYPRE developed by Lawrance Liv-
ermore National Lab, which incorporates parallel AMR grid. Multiple linear solvers
and preconditioners are available in the HYPRE package, in the simulations of this
thesis, we choose to use the PCG solver whenever such linear solver is required.
When treating collapse problems, it is sometimes convenient to abstract a dense,
collapsing region as a particle separated from the gas in the computation grid. This
treatment allows us to treat such region as a point gravity object that can accrete
gas from its surroundings while remain in momentum and energy exchange with its
surrounding gas. The facility of sink particle is a way to approximate star forming
regions without resolving extremely small Jean’s length (Truelove et al 1994). A sink

particle algorithm comprises two parts: (1) the computational condition to create such
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a particle and (2) the accretion algorithm that the particle accretes surrounding gas.
In AstroBEAR, the particle creation is based on the following conditions (Federrath
et al 2010): (1) highest level of refinement: for if it is not on the highest level, the
computation should try further refining such a region instead of “giving up” and
declare a particle. (2) converging flow: this requires a check for V- v < 0. (3) local
density maximum. This check is tweaked from Federrath’s original criterion, which
requires a gravitational potential minimum. (4) Jeans criterion. (5) energy bound
check: requires total energy to be less than zero. (5) not in an accretion zone of an
existing particle. The accretion zone is a fixed size cube surrounding a particle such
that density in such a region is allowed to surpass the threshold density set by Jeans
criterion. We implement several different particle accretion algorithm such as that
described in Federrath et al 2010. For the simulations used in chapter 6, we employ
the accretion algorithm in Krumholz et al 2006, which imposes Bondi accretion rate.

The reasoning for such treatment is discussed in detail in chapter 6.

2.4 Multiphysics: Non-ideal MHD: Resistivity

In lab astrophysics, it is often the case that the Magnetic Reynolds number (de-
fined by the ratio between magnetic diffusion time scale and the convective time scale
of the field lines) cannot be approximated as infinity. It is therefore important to
model the magnetic field diffusion when the simulation is used as a guidance to the
lab astrophysics instrumentation design.

Under operator-splitting, we can treat the magnetic diffusion separately from the

fluid equation. The resistive part can be written as:

88—]? =V x (nV x B) (2.14)

The magnetic diffusivity n is a function of temperature according to Spitzer 1961.
When the field configuration in equilibrium is subject to strong diffusion, heating
would occur and surppress the local resistivity and thus the diffusivity. By expanding

equation 2.14, we have the following form:

B
%—t =nV’B + Vn x (V x B) (2.15)
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The second term of the above expression on the right hand side depends on all of
the three components of B. So we end up with equations in which the time variance
of By, B, and B, depending on each other. By fitting this equation into a linear
solver, we get a coefficient matrix that is not a tri-diagonal matrix, and sometimes
even ill-conditioned. However, To study the lab astrophysics simulations presented
in chapter 7, the magnetic Reynolds number is much greater than 1. For such cases
where resistive speed is slow, we can use explicit solver to treat the problem since
implementing explicit stability condition will not result in significant slow down of
the solver.

One may wonder if it is possible to throw away the second term on the right hand
side of the diffusion equation to just let the diffusivity to vary with position but ignore
its own spacial variation. This would give us a form of resistive MHD similar to that

of the thermal diffusion case but with temperature dependence built in:

%—? =n(T)V°B (2.16)
Unfortunately, this does not work because the diffusion equation itself has to be di-
vergence free. When treating constant resistivity, such approximation can satisfy this
requirement as long as the divergence and the Laplacian are commutable. However,

if resistivity has spatial distribution, we end up getting:

%—? _ VAV -B) + (V- V)B (2.17)

The first term on the right hand side is zero but the second term is not, especially
at sharp temperature fronts where V7' is large. Therefore the linear approximation
only works under ”’slowly varying temperature”’ situation.
In AstoBEAR, we explicitly calculate the resistivity induced current on the cell
edges, following equation:
J=nV xB (2.18)

The stencil for this explicit solver is a 3 x 3 cube surrounding the cell we want to
update. The magnetic field are vectors pointing to either x, y or z direction, centered

on the cell faces. Its curl therefore reside on the cell edges. Figure 2.1 is an example on
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calculating the diffusive current on the x direction, notice that the red arrow is where
we are calculating the diffusive current, the green arrows are where the magnetic field
originally resides.

Since the resistivity solver is explicit, its time step should base on stability require-
ment from equation 2.16. For fast magnetic diffusion cases, one may prefer implicit
solver as such stability requirement can be a quadratic function of the resolution.
However, we note that the diffusion equation 2.16 is not completely divergence free
under finite differencing. After solving the linear system set by equation 2.16, we need
to solve another linear system for the magnetic field so that any divergence caused by
the error from solving equation 2.16 can be removed. Because its complicated nature,
implicit resistivity is not included in AstroBEAR.

In the case of resistive MHD, energy can be dissipated in the form of Joule heat,
comparing to the infinite conductivity case, where the voltage inside the fluid is
everywhere zero, and no heat is generated by the current. If we dot the resistive
induction equation with the magnetic field B, we obtain the time evolution equation

for magnetic energy:
O(BY)/ot+V-S=-J-E=—j?/n (2.19)

where S = J x B is the magnetic energy flux caused by resistive diffusion and j = |J|
is the magnitude of the diffusive current. In this equation, the S term accounts for
the redistribution of magnetic energy (and thus the redistribution of total energy),
and the last term accounts for the loss of magnetic energy due to reconnection. The

total energy change for the resistive step is therefore:
0e/ot+V-S=0 (2.20)

Here the j2/n dissipation term is absent because the dissipation of magnetic energy
does not change the total energy: the loss of magnetic energy is converted into thermal
energy. In the algorithm, the energy flux as a result of magnetic diffusion needs to

be calculated explicitly using:
S=JxB (2.21)
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Figure 2.1 computation stencil for diffusive current and magnetic field calculation.
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The energy fluxes reside on the cell faces while the diffusive currents reside on the
cell edges. We therefore need to compute a face average of the diffusive current as
well as the magnetic field components which are not normal to the face using the
surrounding edges. In figure 2.1, the blue arrows connected by dashed lines are what
are used to compute the energy flux. The magnetic field can be updated from the

diffusive currents by:

0B

= = 2.22
5 V xJ (2.22)
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Chapter 3

Multiphysics Tests

3.1 Test of MHD Heat Conduction

In this chapter, we introduce the numerical tests on the thermal conduction, self
gravity and resistivity components of AstroBEAR.

The MHD solver and the linear thermal diffusion solver are verified by well-known
tests such as the field loop convection problem and the Guassian diffusion problem
separately. As a comprehensive test that involves both MHD and thermal diffusion,
we use the magneto-thermal instability (MTI) problem to test the accuracy of the
ASTROBEAR code with anisotropic heat conduction (Parrish & Stone (2005),Cun-
ningham et al (2009)). The problem involves setting up a 2-D temperature profile
with uniform gravity pointing on the y direction. The domain is square with length

of 0.1 in compuational units. The temperature and density profiles are:

T=T,1—-y/yo) (3.1)
p=rpo(l—y/y)* (3.2)

with 79 = 3. The pressure profile is set up so that a hydrostatic balance may be
achieved with uniform gravity with gravitational acceleration ¢ = 1 in computational
units. We also set T = 1 and py = 1 in computational units. There is a uniform

magnetic field on the x direction with field strength By = 1.0 x 10~ in computational
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units. The anisotropic heat conductivity is set to be x = 1 x 10~ in computational
units. We use the pressure equilibrium condition for the top and bottom bound-
aries, that is, the pressure in the ghost cells are set so that its gradient balances the
gravitational force. On the x direction, we use the periodic boundary condition.

Initially, the domain is in pressure equilibrium. We then seed a small velocity
perturbation:

Uper = Vg sin(nmx/A) (3.3)

with vg = 1x107% and A = 0.5. This perturbation will cause the fluid elements to have
a tiny oscillation on y axis as well as the field lines. Once the field lines are slightly
bent, they open up channels for heat to transfer on the y direction thus allowing the
heat on the lower half of the domain to flow to the upper half. It can be shown
that this process has a positive feedback so that once the heat exchange happens,
more channels will be openned up for heat conduction. Therefore this process forms
an instability whose growth rate can be verified according to the linear instability
growth theory. We use 7, to denote the sound crossing time for the initial state.
Figure 3.1 shows the time evolution of the field lines at various stages in our MTI
simulation.

We study the MTI growth rate by considering the acceleration of the fluid ele-
ments. The mean speed on the y direction for the fluid should follow the exponential
growth:

Vy = Upere? (3.4)

where v, is the strength of the initial velocity perturbation applied, v denotes the
growth rate in the linear regime. We obtain the growth rate v by plotting In v, against
the evolution time and then measuring the local slope through a certain time span.
The In v, vs t curve is plotted in figure 3.2(a), which shows a nice linear relation. We
plot the growth rate against evolution time. It should be stable around the theoretical
value 0.4 initially and then decrease sharply due to the nonlinear effect. Figure 3.2(b)
shows that the simulation meets our expectation well.

We also look at the energy evolution in the linear regime. The mean kinetic energy

should first stay stable and then enter into an exponential growing phase until it hits
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a cap at around t = 200 which denotes the starting of the nonlinear phase. The
evolution of magnetic energy should follow similar pattern as to the kinetic energy
evolution, but lagged behind. In figure 3.3, we plot the time evolution of the mean
kinetic and magnetic energy evolutions. The results confirms the physical intuition

quite well.

3.2 Test of Self Gravity with Sink Particle

3.3 Test of Resistive MHD

One famous problem to test the non-ideal MHD is the Sweet-Parker problem. In
such problem, the initial fluid is held at sheer pinch quasi-equilibrium. The fluid is
then perturbed by either adding a vertical velocity distribution or by increasing the
resistivity at the center of the pinch. The initial magnetic field distribution is given
by:

By(x) = botanh(z/a) (3.5)

where in computational units we choose field amplitude by = 1 and length scale a =
0.5. The density profile is chosen so that the pressure equilibrium can be maintained

with constant temperature:

p(x) = po/cosh?(z/a) + p. (3.6)

where pg = 1 is the density contrast, p. = 1 is the background density. The temper-
ature is set to be constant at 0.5 in computational unit.

The test domain is set to be —6.4 < x < 6.4 and —12.8 < y < 12.8, with resolution
of 480 x 960 and two levels of AMR. The boundaries are all transparent. The initial
profile is plotted in figure 3.4..

The initial state is in pressure equilibrium though unstable. As stated before,
there are two ways to generate instabilities. The first way is to artificially increase
the resistivity at the center of the domain. This increase will result in a higher

reconnectivity, which will eventually bend magnetic field. This creates an X point at
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Figure 3.5 Normalized kinetic energy and magnetic field distribution for Sweet-Parker

outflow.

the center where field lines continue to come in and reconnect because of the lower
field pressure at the center. The reconnection heat will drive outflows out of the
X point, parallel to the direction of the sheer pinch. The box surrounding the X
point where the outflows (Petschek shock) come out of is called the ”Sweet-Parker
Box”. Figure 3.5 shows the Sweet-Parker flow from a reconnection spot at the center.
Colored variable is the kinetic energy in log scale, magnetic field is illustrated by
white streamlines.

The measured outflow has Alfvenic Mach 1, which is consistent with theoretical

value.
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Chapter 4

Magnetized Thermal Conduction

in Wind Blown Bubbles

4.1 Introduction

Interfaces between hot and cold plasmas can occur in astrophysics where un-
derstanding the rate of thermal conduction may be an important part of the the
astrophysical phenomenology. One example occurs in wind blown bubbles (WBB) of
evolved stars where magnetized hot supersonic outflow shock heats the cooler ambi-
ent magnetized interstellar medium. For such WBB, there are examples where the
presumed shock heated bubble is cooler than expected if only radiative cooling is
considered (Zhekov et al. (2011)). A possible explanation is that heat loss through
the interface of hot bubble into the cold shell via thermal conduction reduces the
temperature of the hot bubble (Zhekov & Park (1998), Zhekov & Myasnikov (2000)).
However the source of heat into the cold side of the interface will continuously evap-
orate material there and potentially induce interface instabilities and mass mixing
(Stone & Zweibel (2009)) that could tangle the magnetic field. Understanding the
thermal conduction and its dependence on magnetic structure is important for deter-
mining the thermal properties of the plasma on either side of the interface.

For the ISM and ICM, it is usually valid to assume that the electrons are totally

inhibited from moving across field lines (McCourt et al (2011)), as the electron mean
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free path is much greater than the electron gyroradius. The underlying assumption
is that the field configuration is ideal and there is no stochastic fluctuations existing.
The magnetic field structure then plays a key role in controlling the rate of thermal
conduction since electrons can move freely only along the field lines. It is worth
pointing out that in reality, however, the stochastic field can change the cross field
diffusion even if its amplitude is small. Using the conditions given by Rechester &
Rosenbluth (1978), it can be shown that the ratio of ion gyroradius and the field
length scale presented in our simulation is small. This means even a small added
stochastic field is likely to make a difference in the anisotropicity of the thermal
diffusion. The result is a strong thermal conductivity parallel to the field lines and a
weak conductivity across the field lines.

The quantitative subtleties of how a complicated magnetic field structure affects
thermal conduction for raises the open question of whether there is a simple measure
of field tangling that allows a practical but reasonably accurate correction to the
isotropic conduction coefficient for arbitrarily tangled fields. In this context, two
classes of problems can be distinguished. The first is the conduction in a medium
for which forced velocity flows drive turbulence, which in turn tangles the field into
a statistically steady state turbulent spectrum (Tribble (1989), Tao (1995); Maron
et al. (2004)). The second is the case in which the flow is laminar and the level of
conduction inhibition is compared when the field starts from initial states of different
levels of tangling subject to an imposed temperature difference across an interface.
This second problem is the focus of our preset paper. It should be stated that the
conductivity in our simulations remains that associated with the micro-physical scale
throughout the evolution of our simulation. That is, our flow remains laminar so we
do not have a broad turbulent spectrum of magnetic fluctuations or a corresponding
increase in the effective conductivity as in Narayan & Medvedev (2001).

Using the ASTROBEAR magnetohydrodynamics code with anisotropic thermal
conduction, we investigate the influence of initial magnetic structure on thermal con-
duction in an otherwise laminar flow. The key questions we address are: (1) does
the interface become unstable? (2) how fast is the thermal conduction across the

interface compared to the unmagnetized case?
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We study these questions using different initial magnetic configurations imposed
on a planar thermal interface to determine how the conduction depends on the amount
of field tangling across the interface. In section 2, we review the basic equations of
MHD with anisotropic thermal conduction. In sections 3 and 4 we provide detailed
description of the simualtion setup. In section 5 and 6 we present the simulation
results and analyses. In section 7, we discuss the simulation results in the context of
the WBB cooling problem and the cooling flow problem in cores of galaxy clusters.
The appendix provides more detailed information on the testing of the ASTROBEAR

code.

4.2 Problem Description and Analytical Model

Our initial set up involves hot and cold regions separated by a thin planar interface.
We study how the magnetic field configuration alters the heat transfer rate between
the hot and cold regions in presence of anisotropic heat conduction. We study the
problem in 2-D.

To guide subsequent interpretation of the results, we first compare two simple but
illustrative limits of magnetic field orientation: (1) a uniform magnetic field aligned
with the direction normal to the interface; (2) a uniform magnetic field perpendicular
to the normal direction of the interface. In case (1), because the angle between
the magnetic field and temperature gradient is everywhere zero, heat conduction
across the interface is expected to take on the Spitzer value associated with isotropic
heat conduction. In case (2) however, the angle between the magnetic field and the
temperature gradient is always 90°, so with our approximations, heat cannot flow
across the interface.

We define a heat transfer efficiency ¢ equal to the magnetic field-regulated heat

transfer rate divided by the isotropic Spitzer rate, namely,

(=1 (11)

where ¢ is defined as the amount of thermal energy transported through the interface

per unit time. The average angle 6 between the temperature gradient and the uniform
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magnetic field then plays an important role in determining (. At 6 =0, ( = 1. At
0=m/2,(=0.

We now address the influence of both a mean field and a tangled field on (.
Consider there to be a strongly tangled local field that has no mean value in the
direction normal to the interface, i.e. By, whose total magnitude is By, and a global
magnetic field B, aligned with the normal of the interface of magnitude By. If
By > By, the magnetic field around the interface only slightly deviates from the
normal direction and (¢ should be close to 1. If By < By, ( should be close to
zero. The asymptotic limit of the heat transfer efficiency is given by Chandran &
Cowley (1998) that ¢ ~ 1/(In(d/p.)), where d is the scale length of the magnetic
field fluctuation, p, is the electron gyroradius. In our problem, we estimate this limit
at about 4.7%. In the subsequent context, we will use (5 to denote this asymptotic
limit.

If B; and B, are comparable, we expect (y < ¢ < 1. We also expect { can change
throughout the evolution if the strucuture of the magnetic field is modified by the
dynamics of heat transfer. It is instructive to ask whether the feedback from the
magnetic field structure evolution will amplify the heat transfer by creating more
channels, or shut it down. The answer depends on the influence of magnetic recon-
nection, as we will see from the simulations. Only if magnetic reconnection acts to
smooth out local small scale structures and link the initially isolated structures to
the global mean field across the interface then we would expect the heat conductivity
to increase.

In what follows, we refer to the initial tangled field region as ”the interaction
region”. Figure 4.1(a) shows a schematic of initial and hypothetical evolved steady
state field configurations for such a tangled field set up. From the figure we can
see that the initial field configuration forms a ”wall” which restricts energy transfer
across the two interaction region. However, if the subsequent evolution evolves to
the steady state shown in (b), then expansion of the interaction region and magnetic
reconnection has allowed the field to penetrate through the entire region. Thus the
initial "wall” of tangled field is destroyed and thermal conduction will be less inhibited

than initially. We will check how accurately this proposed picture of destruction of
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Figure 4.1 The initial and steady state field configuration. (a): the initial field forms
complete loops that only allows heat transfer within the interaction region. (b): the
steady state field reconnects itself so that it allows heat transfer between regions

deeply into the hot and cold areas.
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field wall is valid from analyzing our numerical simulations, and quantitatively discuss

the effects on the energy transfer.

4.3 Simulation Setup

For our initial conditions, we set up an interface between hot and cold regions in
mutual pressure equilibrium. The temperature distribution on the horizontal = axis
is given by T'(z) = To[1 — 4(x — x9)*/w?]>* in the region [z¢, zo + w] with Ty = 100 in
computational units. This region is the interaction region as described in the previous
section, with xg as the left end, w as the width. In the regions (0, zo) and (zo+w, L)
where L, is the domain length, we simply assume 7'(0 < z < xy) = T(x = x¢) and
T(xo+w < x < L) = T(x = zo + w): in other words, the temperature profile
has a sharp gradient inside [xg, 2o + w]. while outside this region, it remains flat.
The obtained temperature distribution is plotted in Figure 4.2(a). We set zq = 0.4
and w = 0.1. The region 0.4 < =z < 0.5 is therefore the interaction region. The
temperature is constant and uniform across the regions of each respective side of the
box connecting to that side of the interaction region. We are primarily interested in
the region of the box where the heat transfer occurs and noticeably evolves during
the simulation run time. This means we will mainly focus on the interaction region.
The horizontal length of the interaction region in the simulation domain is L, = 0.8
in computational units.

The thermal pressure is set to be in equilibrium over the entire box, that is P(z) =
Py with Py = 100. The density distribution is set up by the ideal gas law, namely
p(x) = P(x)/T(z) in computational units.

For the Spitzer diffusion coefficient, we assume the diffusion is linear, and use the
approximation k| = k. Ty, where k. is the classical conductivity, and T4 is taken
to be the middle value of temperature across the interface, about 0.5 Tj.

We choose the initial field configuration:
B, = By + By sin(nmy/\), (4.2)
B, = Bysin(nmx/\) (4.3)
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where n and A\ are the mode number and wavelength of the tangled field respectively,
By = 1073 in computational units, and By can assume various initial values that
reflect the evolving global field as the result of reconnection. The magnetic field
configuration is laminar, and there is no broad spectrum of magnetic fluctuations. The
magnetic spectrum is concentrated at length scale \.This initial field configuration is
therefore one of a locally tangled field surrounding the interface with one measure of
the tangle given by:

R = B;/By (4.4)

When R = 0, there are only locally confined field lines, whereas R = oo indicates a
straight horizontal field without any ”"tangling”. As R increases, the relative fraction
of field energy corresponding to lines which penetrate through the interaction region
increases. In our simulations, we consider cases with R = 0.0, 0.2, 0.4, 0.6, 1, 2, 4, cc.
Figure 4.2(a), Figure 4.4(a) and Figure 4.5(a) show the magnetic field configuration
for initial R values of 0.0, 0.4, 1.0.

We note that our MHD approximation a priori implies that the electron gydrora-
dius is much smaller than the length scale of one grid cell. Thus the dissipation scale
and all field gradient scales are larger than the electron gyro-radius by construction
in our simulations.

We run simulations with typical resolution of 2048 cells on the horizontal axis
in fixed grid mode. Runs with doubled resolution showed no significant differences
compared to the standard resolution runs. We use fixed boundary conditions at the x
boundaries: the pressure, density and temperature at the two ends are fixed to their
initial values, as is the magnetic field. We use periodic boundary conditions for the
y axis boundaries.

There are five parameters whose influence determine the simulation behavior and
guide interpretation of results:

1. Plasma 3. g = Sg—f has little effect on diffusion because even with very high
values of the plasma 3 used in the simulation, we are still in the MHD regime and the
gyro-radii of electrons are assumed small. Thus the direction of thermal conduction

is not locally affected by (. It is possible that instabilities could arise in the low [
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limit that affect pressure balance during the evolution of the simulations but that
turns out not to be the case for the 8 range of 10° ~ 10® that we use. The value of 3
in this range does not exihbit any influence on the simulation result as indicated by
our numerical experiment.

2. Initial Tangle measure R = B;/By. If R >> 1, the local small scale
field can mostly be ignored and Spitzer thermal conductivity is expected, whereas if
R << 1 a value much less than Spitzer is expected.

3. Ratio of the diffusion time scale to the sound crossing time scale for

one grid cell:

pCil
udl

where p is the density, [ is the characteristic gradient length scale of temperature:
T

[ = mm(ﬁ) and Cj is the sound speed. If r << 1, thermal diffusion would initially
dominate and the pressure equilibrium would be broken by this fast energy transfer.
If r >> 1, then the pressure equilibrium would be well maintained throughout the
entire evolution and the energy transfer may be viewed as a slow relaxation process.
In our simulation, r = 0.3 initially, so that diffusion induces a pressure imbalance.
Eventually, as the heat transport slows, the pressure equilibrium catches up and is
maintained.

4. Ratio between the temperature gradient scale length and the wave-
length of the tangled field: h =27l/\ =kl . If h = 0 there is no tangled field,
and no inhibition to heat transfer. As h inreases, the field becomes more tangled, and
the energy is harder to transfer. However, a large h value may also result in increased
magnetic reconnection, because the Lundquist number of field confined in a smaller
region is larger, for the same field strength. Thus would then lower h.

5. Mean global energy transfer rate: ¢ = 0FE/tyy, where ty, is defined
as the time needed for the hot region and cold region to reach a certain degree of
temperature equilibrium by a transfer of heat energy 0 F across the interface.

A mathematical expression for the heat transfer rate can be derived by consider-

ing a slab with a planar interface aligned with the y direction at the middle of the
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interaction region with a tangled magnetic field, and an average temperature gradient
aligned in the z direction. As in Section 4, we denote the region [zg, zo + w| as the
interaction region which contains the interface and the tangled field. Define the av-
erage temperature gradient inside the interaction region as |V 1|, = (Thot — Teotd) /W,
where the subscripts “hot” and “cold” denote the characteristic temperatures of the
hot and cold sides at the two ends of the interaction region. We assume that the
resulted effective heat flux depends on how much straight mean field can penetrate
through the interaction region. We also assume the heat flux depends on the average
temperature gradient of the interaction region in the form: g o< |V T'|,. By integrating
the proportion of the amount of straight mean field over the volume of the interaction
region (and since there is no z-dependence, the essential content is an area integral)

to obtain the effective heat flux through this region:
B
§:D|VT|9/|T;’dxdy, (4.6)

where D is a constant that depends on neither the magnetic field nor the average
temperature gradient, |B| is the local field strength. The 2-D integration is carried
out over the interaction region: with zp < x < x¢ +w, 0 <y < L,. Notice that this
expression is valid only when the magnetic field is varying at a length scale smaller
than the interaction region length.

Using equations 4.2, 4.3, 4.4 in 4.6 and the approximation that the areal average
in the interaction region (Bg - B;) ~ 0 so that ((Bg + By)?) ~ (B2 + B2), we obtain
D VT, R.

Vit

For the unmagnetized isotropic case, or for transfer with a field entirely aligned with

q=

(4.7)

the temperature gradient, we have instead
7= DIV, (4.8)

Dividing equation 4.7 by 4.8, we obtain an appoximation for the heat transfer

efficiency over the interaction region:
R

(= (4.9)
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It should be pointed out that our approximation does not take into account the (y
"leakage” from the magnetic field fluctuation as stated in Section 3 and Chandran
& Cowley (1998). If the initial temperature profiles are identical for different field
configurations, this formula can then be used to estimate the expected energy tranfer
rate from situations with various field configuration. By normalizing the heat transfer
rate to that of the isotropic heat conduction case, we obtain the heat transfer efficiency
(. The accuracy of equation 4.9 can be tested by plotting the heat transfer efficiency
obtained from the simulations against measured values of R.

If magnetic reconnection occurs during the time evolution of the heat transfer
process, then conduction channels can open up and the energy exchange can be
accelerated. We would then expect the actual curve of ( vs R to evolve to be higher
than the value equation 4.9 predicts in situations with low R values. Meanwhile, for
high R, the analytical prediction and the real physical outcome should both approach
the horizontal line ( = 1, which denotes conductive efficiency consistent with the
unmagnetized case. We emphasize that R as used in this paper is always calculated
with the the initial values of the magnetic field, not time evolved values, and that
equation 4.9 is valid when estimating a cold to hot interface with initial tangle measure
as the ratio of initial global straight field to initially local tangled field. To follow a
measure of the tangle that evolves with time, a generalized tangle measure should be
calculated in a more sophisticated manner and the integral form equation 4.8 should

be applied.

4.4 Simulation Results

We choose initial conditions with values R = 0.0, 0.2, 0.4, 0.6, 1.0, 2.0, 4.0 to run
the simulations. The simulation run time is taken to be 1.2 (which corresponds to
12,000 years in real units for WBB. The initial cuts of temperature and magnetic field
lines for R = 0.0, 0.4, 1.0 are shown in Figure 4.2(a), Figure 4.4(a) and Figure 4.5(a)
respectively. Figure 4.3(a) shows the initial cut of the density distribution in the
R = 0.0 run. We also run simulations with purely horizontal magnetic field lines,

equivalent to the R = oo case, and runs with purely vertical field lines. Frames (b) to
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Figure 4.2 Evolution of temperature distribution with R = 0.0. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.

(d) in Figure 4.2 to Figure 4.5 are from the late stages of the evolution, and the final
frames always display the steady state of the runs. A steady state is facilitated by the
fact that the boundaries are kept at a fixed temperature throughout the simulations.

In Figure 4.6, we plot the mean cuts of the temperature 7., obtained by averaging
the temperature along y axis, against the x position for selected evolution times. Since
the anisotropic heat conduction is initially faster than the pressure equilibration rate,
the energy distribution around the temperature interface change rapidly until about
t = 0.4. This energy transfer is mostly confined to the interaction region for the
low Ry runs, since in these cases only a few field lines can penetrate into the entire
interaction region.

During the initial heat exchange phase, the thermal energy and density quickly
redistribute in the interaction region. As seen in Figure 4.2(b), islands at = = 0.48

are formed by material bounded by the magnetic field lines, since the field orientation
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Figure 4.3 Evolution of density distribution with R = 0.0. The cuts are at

t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.
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Figure 4.4 Evolution of temperature distribution with R = 0.4. The cuts are at (a):
t = 0.0, the initial state, (b): ¢t = 0.4, (¢): t = 0.8, (d): t = 1.2, the steady state.
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Figure 4.5 Evolution of temperature distribution with R = 1.0. The cuts are at (a):
t = 0.0, the initial state, (b): ¢t = 0.4, (¢): t = 0.8, (d): t = 1.2, the steady state.
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blocks heat exchange with the surroundings. Around x = 0.4, there are also cavities
formed where the thermal energy is inhibitted from flowing. The magnetic field lines,
which form complete sets of loops in the R = 0.0 case, begin to distort. It can
be observed that the field lines are more strongly distorted in the low density part
of the interaction region than in the high density part. This occurs because velocity
gradients are driven by the early rapid redistribution of heat (pressure) by conduction.

At time t = 0.4 (see Figure 4.2(b)), the field lines surrounding the cavities at
x = 0.4 reconnect, making thermal exchange possible. During the evolution, field
lines begin to link the interaction region to the hot material on the left. This phe-
nomenon is most apparent in Figure 4.2(d), which marks the final state of the thermal
energy exchange. We also see that there is little difference between Figure 4.2(c) and
Figure 4.2(d), because at late stage of the process, the thermal diffusion gradually
slows so that the magnetic field configuration approaches a steady state.

By comparing Figure 4.6(c) with Figure 4.6(d), we see that the mean cuts of
temperature show little difference for all values of R. The mean cuts of temperature
T, exhibit a jump in the region of z = 0.35 ~ 0.5, but are relatively smooth on
either side of this region. This shows that even though the tangled field "wall” has
been broken and allows channels of thermal conduction through it, the temperature
profiles is not as smooth as in the purely straight field case.

For the cases of R = 0.4, there are field lines which penetrate the entire interaction
region from the start. By observing the evolution of the magnetic field lines at about
r = 0.38, we see that magnetic reconnection is still happening, and causes the field
loops to merge. The observed behavior resembles the process displayed by Figure 4.1.
When R = 1, there are hardly any temperature islands that bounded by magnetic
field loops. The evolution of the field lines shows less dramatic reconnection and

evolve in what appears as more gentle straightening.

4.5 Discussion

We begin our analysis with the evolution of the heat flux. The average heat

flux per computation cell for different values of R is plotted as a function of time in
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Figure 4.6 Evolution of mean cut temperature averaged on y direction with different
R values labeled by different colors. The cuts are at (a): ¢ = 0.0, the initial state,
(b): t =04, (c): t =0.8, (d): t = 1.2, the steady state.
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Figure 4.7 (a) top left: time evolution of mean heat flux at the interface, (b) top right:
time evolution of average temperature difference between the hot and cold regions,
(c) bottom left: time evolution of interface width, (d) bottom right: time evolution

of the mean value of |V x B].
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Figure 4.7(a). Note that in the vertical field case (B = B,y) the heat flux remains
zero as field entirely inhibits electron motion across the interface. For cases with
R > 1, the heat flux decreases throughout the evolution. Recall that R > 1 implies
cases where the "tangled” portion of the field is relatively weak and heat is quickly
transported from one side of the interface to the other. Thus the trend we see for
R > 1 occurs as the temperature distribution approaches its equilibrium value. For
lower R values, especially those of R < 0.5, an initial phase of heat flux amplification
is observed as magnetic reconnection in the early evolution opens up channels for
heat to transfer from hot to cold regions. At the late stage of the evolution when
reconnection has established pathways from deeper within the hot region to deeper
within the cold region temperature equilibration dominates leading to a decreasing
heat flux phase as observed in the R > 1 cases. Note that the similarity between the
R > 2 cases and the R = oo case is predicted by equation 4.9: as the global field
comes to dominate, the heat flux inhibition imposed by anisotropic heat conduction
in the local tangled field can be ignored.

In order to understand the influence of magnetic reconnection on heat transfer
rates we compare simulations with different filling fractions of the tangled field. Two
cases are shown in Figure 4.8(a): (1) a temperature interface with a ”volume filling”
tangled field and (2) temperature interface with the tangled field filling only the
region surrounding the interface. In case (2) the rest of the domain is filled with
straight field lines connecting the hot and cold regions. From Figure 4.8(a) we see
that case (1) shows much slower heat transfer rates compared to what is seen in case
(2). This results because reconnected field lines in case (2) are linked to the globally
imposed background field that in turn linking the hot and cold reservoirs. In case (1)
reconnection only leads to larger field loops but cannot provide pathways between the
reservoirs. The effect of different scale lengths on the evolving field loops is shown in
Figure 4.8(b) in which we plot the result from three simulations wavelengths for the
tangled field component (tangled field ”loops”). Note that A is defined in equations 4.2
and 4.3. We use a sequence of values for wavelength: 2\, A and /2. Figure 4.8(b)
clearly shows that smaller field loop A leads to the largest average heat flux, since

smaller scale loops will reconnect before large loops for a given magnetic resistivity.
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Figure 4.8 (a) Comparison of averaged heat flux for situation with field loops filling
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This result demonstrates the link between the number of reconnection sites of the
field and heat flux.

We next analyze the temperature equilibration in detail. The averaged tempera-
ture difference across the interface is plotted in Figure 4.7(b). It shows the difference
between the averaged temperature at the hot side and the cold side. One significant
feature in Figure 4.7(b) is that the temperature difference decreases to a steady value
T.,q in all cases. This resembles percolation across a membrane which allows a density
jump to happen when filtering two fluids. Figure 4.7(c) shows the distance required
for the temperature to drop 80 percent at the interface. This distance characterizes
the length of the interaction region. Except for the vertical field case where no heat
transfer is allowed, the interface is expanding at different rates for different R values.
The expansion for all the cases of nonzero R approaches a steady value which is also
a characteristic feature of the temperature equilibration evolution.

We now analyze the modification of magnetic field configuration during the evo-
lution. Throughout our simulations, the local magnetic field is initially a set of com-
plete loops surrounding the interaction region. Once the energy transfer begins, the
interaction region tends to expand as discussed previously. This expansion stretches
the field lines on the x direction and distorts these circular loops, eventually inducing
magnetic reconnection which oppens up channels connecting the hot and cold regions.
From the current Jg = |V x B|, we can get information on how tangled the field is.
Figure 4.7(d) shows the evolution of the mean value of the strength of V x B in the
interaction region. We observe that in the vertical and straight field case, |V x B|
remains constant, but decreases to a fixed value for R > 2 cases. This means the field
in high R cases is straightened by the stretching of the interaction region as seen in
Figure 4.7(c). For the R < 1 cases, we see that |V x B| increases. This rise is due
to magnetic energy brought in via the cold mass flow and the creation of fine field
structures that amplify Jp faster than dissipation caused by interface expansion.

The local field distortion can be clearly demonstrated by studying the energy
evolution of magnetic energy stored in different field components. In Figure 4.9(a), we
plot the evolution of mean magnetic energy stored in the vertical field Bg /2, compared

with B2/2. We note that the latter includes only the fluctuating contribution to the
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energy in the x field— that is, the contribution to the horizontal field that does not
come from the global mean x component.

From Figure 4.9(a), we observe that the BS energy decreases while the B? energy
either increases or remains the same for all cases. The magnetic energy evolution can
thus be viewed as a conversion of vertical field to horizontal field. This conversion
need not conserve the total magnetic energy of the local tangled field because of
magnetic reconnection and because material advecting magnetic field can flow in and
out of the interaction region. By comparison, in the R > 1 cases, the thermal energy
and local magnetic energy can both decrease and add to the kinetic energy of the
material surrounding the interface, because of the fast thermal diffusion enabled by
the strong global field.

The distortion of the local field loops can also be demonstrated by plotting the
mean eccentricity of the field loops. In Figure 4.9(b), we plot the mean eccentricity
evolution. For all cases, the mean eccentricity is zero initially because of the circular
shape of the field loops. Later in the evolution, large R cases tend to evolve into a
state of large eccentricity in the steady state. This is caused by a rapid expansion
of the interface induced by the strong global field. In short, large R induces more
distorted local field loops and less tangled total field due to fast interface expansion,
while small R values results in less eccentric local field loops but with more tangled
total field and strong magnetic reconnection.

To compute the estimated heat transfer rate in the simulation, we calculate the
averaged slope of the curve plotted in Figure 4.7(b), and compare it to the analytic
model in Section 4. Although the equilibration rate represented by the slope of
the curves in Figure 4.7(b) is changing throughout the evolution, an early phase
of the evolution can be chosen when the field configuration has not been modified
significantly for which we can then comptute the averaged heat transfer rate. By
normalizing the resulting heat transfer rate to the isotropic value, we can determine
the heat transfer efficiency for different magnetic structures. From figure 4.10, we can
see that the analytic prediction and the simulation results agree quite well except for
the situation when R is below 0.2. The simulation result does not converge to point

(0,0) but ends at an intercept on the y axis. This intercept, which is much larger
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compared to both the approximated model and the aymptotic limit (j, indicates that
even if there are initially negligibly few channels for energy transfer, the magnetic
reconnection can open up channels and allow heat transfer. Equation 4.9 is valid for
predicting the cooling rate of the hot material throughout the early phase of the heat
equilibration process. It also provides insight on the strength of the local field in
the vicinity of the interface once we know the cooling rate and global magnetic field
strength.

It should be pointed out that in our case the electron gyroradius is assumed small
compared to the numerical resolution. If we had used an explicit resistivity, then the
equivalent assumption would be that the gyro-period is longer than the resistive time
on a field gradient scale of order of the gyroradius. The numerical resistivity, which
results in numerical reconnection is always present in our simulations and its effect
does not seem to depend on resolution: simulations with double resolution shows no
significant difference in overall heat transfer efficiency. The existence of numerical
resistivity allows the topology of the field to change when scales are approaching the
grid scale. As long as this scale is very small compared to global scales, the overall
heat transfer rates are not strongly sensitive to this value.

To summarize our results we find first that the average heat flux at the end of our
simulations is lower than at the beginning for all R values. Thus we see an approach
to thermal equilibrum. In some cases we also see that the heat shows an initially
increasing phase denoting a period of active magnetic reconnection.

In the simulations we see the average temperature difference decreases to a con-
stant value T,,4 which is related to R. We also see the width of the initial interface
expand to a fixed value during the simulation.

Analysis of the simulation behavior shows that Jp is an accurate measure of
structural change in the magnetic field. Current decreases to a constant value for
large R cases and increases to a constant value for small R values.

Finally we have shown that equation 4.9 can be used to estimate the energy
transfer rate for an initially complicated field structure by considering the relative
strength of the local field and the global field. For those cases for which R approaches

0, equation 4.9 becomes invalid since the energy transfer in is mainly induced by a
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feedback from the magnetic field reconnection. By comparing cases with different
field loop length scales, we demonstrate that the smaller the field loop length scale,

the faster the reconnection rate.

4.6 Concluding Remarks

In this chapter, we investigated the problem of heat transfer in regions of initially
arbitrarily tangled magnetic fields in laminar high 5 MHD flows through AstroBEAR
simulations. The key condition for the magnetic heat flux regulation to occur is that
the electron gyroradius needs to be much smaller compared to the electron mean
free path. Under such condition, the heat flux is only allowed along the direction of
field lines, and thus result in a lower than expected heat transfer efficiency. One of
the important results from the simulations is that even if the field loops are locally
confined, i.e. its length scale is smaller than the temperature gradient length scale,
the hot and cold regions can still exchange heat. This exchange causes pressure
imbalance and thus material flow to bend the field lines. In the case of WBB interface
with laminar flows, the net effect of this energy exchange is the straightening of the
initially tangled field lines, and the reconnection on the field loop length scale. Once
the field loops begin to connect regions deep into the hot and cold reservoirs, more
energy exchange can happen and eventually making the magnetic field length scale
comparable to the temperature length scale, thus reaching a state similar to the
non-magnetized case.

We have derived equation 4.9 as an estimate to the heat transfer efficiency through
measuring the initial tangled field length scale R.

The issue of magnetized conduction fronts and their mediation of temperature
distributions occurs in many astrophysical contexts. One long-standing problem that
may involve anisotropic heat conduction are hot bubble temperatures in Wind Blown
Bubbles (WBB). WBB’s occur in a number of setting including the Planetary Neb-
ula (PN), Luminious Blue Variables (LBVs) and environments of Wolf-Rayet stars.
When a central source drives a fast wind (Viing ~ 500km/s) temperatures in the

shocked wind material are expected to be of order 107 K, which is greater than 2 kev.
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Table 4.1 Scaling of Simulation Parameters

Variables Computional Units WBB
Number Density 1 lem™3
Temperature 100 1 kev
Domain Length 0.1 0.025 pc
Local Field Strength 1073 278 Gauss
Global Field Strength 1074 279 Gauss
Evolution Time 1.2 12,000 yrs
Heat Conductivity 1072 2x 1078 emsg K725

The temperatures observed in many WBB hot bubbles via from X ray emission are,
however in the range of 0.5 kev to 1 kev range. NGC 6888 is a particularly well known
and well studied example for a WR star (Zhekov & Park (2010)). For planetary neb-
ulae, Chandra X-ray observations have found a number of WBB hot bubbles with
temperatures lower than expected based on fast wind speeds (Montez et al. (2005),
Kastner et al. (2008)). The role of wind properties and heat conduction in reducing
hot bubble temperatures has been discussed by a number of authors (Steffen et al.
(2008), Akashi et al. (2007), Stute & Sahai (2007)). The role of magnetic fields and
heat conduction was discussed in Soker (1994).

While our simulations herein were meant to be idealized experiments aimed at
identifying basic principles of anisotropic heat conduction fronts, we can apply physi-
cal scales to the simulations in order to make contact with WBB evolution. Table 4.1
shows the results of such scaling. Upon doing so, we infer that: (1) given field
strengths expected for WBB’s, heat conduction is likely to be strong enough to influ-
ence on the temperature of the expanding hot bubble and the cold shell bounding it.
We also note that magnetic fields in WBB (for PN field strengths see Wouter et al.
(2006)) are usually in the milli-Gauss range, and are relatively much stronger than
the field strength that can be scaled to our simulations. Thus the magnetic field in
realistic WBBs is highly likely to result in anisotropicity and regulate the behavior of
heat conduction. Since the heat transfer does not directly depend on the magnetic 3,
we can thus apply our analysis to the WBB interface if we approximate the interface

to be planar and stationary, which is reasonable as the radius of curvature of WBBs
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are much greater than the interface scale of relevance. We must also assume that the
global magnetic field is primarily radial.

The computational parameters used in our simulations and the real physics pa-
rameters typical in a WBB are listed in the first two columns of table 4.1. We choose
the domain length to be 0.025 pc, which is about 1 percent of the radius of the ac-
tual WBB. Table 4.1 shows that by choosing the proper scaling, our simulation fits
well with the data observed in a typical WBB. Therefore, the conclusions we draw
by analysing the simulation results and the analytical expressions, especially equa-

tion 4.9, can be helpful in analyzing WBB evolution.
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Chapter 5

MHD Shock-Clump Evolution with
Self-Contained Magnetic Fields

5.1 Introduction

The distribution of matter on virtually all astrophyically relevant scales is nonuni-
form. Within our own galaxy, matter overabundances are found in molecular clouds,
and within these clouds matter further is distributed unevenly in the star-forming
regions known as molecular cloud cores. Clumps of material exist on smaller scales
as well. This heterogeneous distribution of matter is required, of course, for star and
planet formation. On the other hand, energetic sources such as young stellar objects
(YSOs), planetary nebulae (PNe), and supernovae inject kinetic energy back into
their environments in the form of winds, jets, and shocks. On larger cosmological
scales galaxies are clustered implying the early evolution of the Universe involved
heterogeneous or ”clumpy” flows as well. The central regions of active galaxies with
their supermassive blackholes are also expected to be home to extensive regions of
heterogeneous density distributions with strong incident winds and shocks. Thus un-
derstanding how the former (clumps) and latter (winds, jets, and shocks) interact
remains a central problem for astrophysics. Since dynamically significant magnetic
fields are expected to thread much of the plasma in the interstellar and intergalactic

medium the role of magnetic forces on shock clump interactions is also of considerable
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interest.

Early analytic studies of single clump /shock interaction focused on the early stages
of the hydrodynamic interaction, where the solution remained amendable to linear
approximations. The evolution late in time, when the behavior becomes highly nonlin-
ear, remains intractable from a purely analytic standpoint and therefore has benefited
greatly from numerical investigation — a review of the pioneering literature may be
found in Klein et al (1994) (hereafter KMC94), or Poludnenko et al (2002). Illus-
trating the maturity of the field, a variety of physics has now been included in the
studies. KMC94 discussed systematically the evolution of a single, adiabatic, non-
magnetized, non-thermally conducting shocked clump overrun by a planar shock in
axisymmetry (“2.5D”). Similar simulations were carried out in three dimensions (3D)
by Stone & Norman (1992). The role of radiative cooling [e.g. Mellema et al (2002),
Fragile et al (2004)], smooth cloud boundaries [e.g. Nakamura et al (2006)], and
systems of clumps [e.g. Poludnenko et al (2002)] have all been studied. A similar
problem involving clump-clump collisions, has also received attention [e.g. Miniati
et al (1999), Klein & Woods (1998)]. Most studies predominantly use an Eulerian
mesh with a single- or two-fluid method to solve the inviscid Euler equations. One
notable exception is Pittard et al (2008), who use a “k —€” model to explicitly handle
the turbulent viscosity.

As the list of papers described above shows there have been many studies of
hydrodynamic shock clump interactions, numerical studies focused on MHD shock-
clump interactions have been fewer. Of particular note are the early studies by Mac
Low [Mac Low et al (1994)], Jones [Jones et al (1996)] and Gregori [Gregori et
al (2000)] which articulated the basic evolutionary paths of a shocked clump with
an embedded magnetic field. Further studies at higher resolution Shin et al (2008)
or including other physical processes such as radiative cooling Fragile et al (2005)
or heat conduction Orlando et al (2008) have also been carried out. In all these
studies however the magnetic field was restricted to uniform geometries in which the
field extended throughout the entire volume including both the clump, ambient and
incident shocked gas. Thus B, = Bxi—i-Byj—i-leA{ where (B,, By, B,) were constants.

Throughout these studies the role of fields could be traced to the relative impor-
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tance of components perpendicular or parallel to the shock normal. The results can
be summarized as follows: (1) When the field is parallel to the shock direction, mag-
netic field is amplified at the head of and behind the clump. The top of the shocked
clump is streamlined but there is no significant suppression on the fragmentation of
the clump even for low initial magnetic 5. (2) When the magnetic field is perpendic-
ular to the shock normal, the field wraps around the clump and becomes significantly
amplified due to stretching driven by the shocked flow. In these cases the shocked
clump becomes streamlined by field tension and its fragmentation via instabilities can
be suppressed even for high initial 5 cases. Adding radiative cooling into the simu-
lation can further change the shocked behavior as more thin fragments and confined
boundary flows, are formed [Fragile et al (2005)]. There are also studies in recent
years focusing on the multi-physics aspect of the problem by incorporating the MHD
simulations with processes like thermal diffusion, etc [Orlando et al (2008)].

Thus these studies with uniform fields have shown the importance of initial field
geometry on the evolution of MHD shocked clumps. The assumption of uniform fields
is however an over-simplification to real environments in which clumps most likely
have some internal distribution of fields which may, or may not, be isolated from the
surrounding environment. The creation of an interior field would likely be linked to
ways clumps can be formed. For example shells of magnetized gas can be swept-
up via winds or blast waves. If these shells break up via dynamic modes such as
the Rayleigh-Taylor (hereafter RT) or Kelvin-Helmholtz (hereafter KH) instabilities
then the clumps which form are likely to develop complex internal field topologies.
While these fields may stretch into the surrounding medium reconnection can lead
to topological isolation. Numerical studies of MHD RT unstable layers relevant to
supernova blast waves confirm the development of internal fields [e.g. Jun et al
(1995)]. Numerical and high energy density laboratory plasma experiments have also
shown how collimated MHD jets can break up into clumps via kink mode instabilities
[e.g. Lebedev et al (2005)]. The clumps which form via the instability have been
shown to carry complex internal fields.

Another example comes when a cold shell embedded in a hot environment at-

tempts to evolve towards thermal equilibrium via thermal conduction. If the shell
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contains an initially tangled field then some of the shell material will be captured
in the tangled field region and become disconnected from the background field via
anisotropic thermal conduction [Li et al (2012)].

Thus the next level of realism in studies of MHD shock-clump interactions is the
exploration of more realistic magnetic fields. Since all studies to date have initialized
their simulations with uniform fields, in this work we begin with only interior fields.
Our simulation campaign is designed to explore the question: how do more complex
field topologies within the clump alter the evolution of shocked clumps. In an effort
to isolate important physical processes we choose to use relatively simple interior
fields i.e. purely toroidal and purely poloidal both with different alignments to the
direction of shock propagation. While we have carried out simulations with random
fields we will report the results of those studies in a subsequent paper.

In Section 2 and 3 we describe the numerical method and model. In Section 4
we report our results. Section 5 we provide a analytic model for the evolution field
energy that allows us to correctly order the different initial cases and in Section 6 we

summarize and provide conclusions.

5.2 Problem Description and Simulation Setup

The initial conditions for the simulations presented in this paper are all based
on the same clump/shock/ambient medium, conditions i.e. the clump, ambient and
shock conditions are the same. The only variable we explored was the internal mag-
netic field topology and strength. Our set-up for a torodial magnetic field initial
condition is illustrated in figure 5.1.

We choose conditions that are astrophysical relevant with a focus on clumps occur-
ring in interstellar environments. We note however that behavior seen in our model
will scale with the appropriate dimensionless numbers. We denote the shock speed
by vs, ambient sound speed by ¢, clump density by p., ambient density by p,, clump
thermal pressure by P, the self-contained magnetic field pressure by Pg, clump ra-
dius by 7. and radiative cooling length by r.. Then as long as the Mach number
M = vg/c, clump density ratio & = p./pa, plasma beta § = Py, /Pp and cooling
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Figure 5.1 The initial setup of the clump simulations. The actual domain is four
times as long on x as on y and z. The upcoming planar shock is at the left edge of the
domain, propagating rightward along the x axis. The stripes on the clump surface
denote a self-contained toroidal magnetic field with its axis aligned with x axis inside

the clump.
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parameter x = r./r, are the same between two runs then the solutions should be
independent of absolute scales for input parameters.

Thus we choose an ambient gas that is non-magnetized and isothermal, with a
particle number density of lcc™! and a temperature of 10*K. Our clump begins with
a radius of r. = 150a.u. and is in thermal pressure equilibrium with the ambient
medium. The clump has a density contrast of & = 100, i.e., particle number density
of 100cc™! and a temperature of 100 K . The domain is a box with dimensions
2400a.u. x 60a.u. x 60a.u., with an resolution of 1296 x 324 x 324 , which gives 54 cells
per clump radii. We use outflow boundary conditions on the six sides of the box. We
are thus able to follow the evolution for approximately 16 clump radii.

The magnetic fields in our clumps were chosen to allow for self-contained geome-
teries. We use (4,4 to denote the ratio of thermal pressure to averaged magnetic
pressure across the entire clump, that is

Py,

PB,avg

Bcwg = (51)

where Pg 4, denotes the average magnetic field pressure inside the clump. The
detailed setup of the self-contained magnetic field is described in Appendix A.

To better characterize the initial magnetic field configuration, we use a dimen-
sionless number 7 to define the ratio of magnetic energy of the field component that
is perpendicular to the shock propagation direction. If the average magnetic field
energy density for the initial setup is B3 /87, then the perpendicular component has
an average magnetic field energy denisty of nB2/8, while the parallel component
has an average magnetic field energy density of (1 — n)B2/8w. n for different initial
magnetic field setup is summarized in table 5.1.

Throughout the paper, we use [, as a measure of dynamical importance of
the self-contained magnetic field, and investigate the shocked behavior of situations
where the self-contained field is either strong or weak. We will refer to the simulations
with Bg,y = 0.25 as "strong” field cases and those with (., = 1.0 as "weak” field
cases throughout the paper. The orientation of the magnetic field relative to the
incident shock is another critical parameter. This was already seen in the uniform field

simulations described in the introduction. In our simulations, we focus on the cases
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Table 5.1 Simulation Setups

Code | Bavg | Field Configuration | Field Orientation (related to shock normal) | 7
TAS | 0.25 toroidal aligned 1
TPS | 0.25 toroidal perpendicular 0.5
PAS | 0.25 poloidal aligned 0.25
PPS | 0.25 poloidal perpendicular 0.75
TAW | 1 toroidal aligned 1
TTPW | 1 toroidal perpendicular 0.5
PAW | 1 poloidal aligned 0.25
PPW | 1 polotdal perpendicular 0.75

when the self-contained magnetic field is either purely poloidal or purely toroidal. For
these fiield configurations which possess an axial symmetry, it will be the orientation
of the field axis b to the shock normal n which matters. For each configuration we run
both parallel b-n = 1 and perpendicular cases b-n = 0. The complete set of runs
presented in this study are described and coded in table 5.1 and these orientations
are presented visually in figure 5.2.

We do not begin our simulations in a force free state as it is not clear that this is
the most generic astrophysical situation. Clumps created in dynamic environments
subject to repeated incident flows may not have time to relax to force free conditions.
Thus we expect the clump will be deformed by the self-contained field on the time
scale of

Te

B = — =~ 276yTs, (5.2)
UA

where u 4 is the Alfven speed of the self-contained field calculated from the average
magnetic energy density inside the clump. In our simulations the clump evolution
driven by the shock is always faster than or comparable to this timescale as we discuss
below.

The incoming shock has a Mach number M = 10 which puts our simulations in
the strong shock regime (KMC94). To understand the role of the magnetic fields we
identify the clump crushing time scale as

VXTe

Us

Tee = ~ 95yrs. (5.3)

Thus 7.. < 7 and we expect that the strong shock dynamics driven by the trans-
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Figure 5.2 The initial setup of the clump magnetic field. The actual domain is four
times as long on x as on y and z. The first letter denotes the field configuration: T
for toroidal only; P for poloidal only. The second letter denotes the field orientation
with respect to the shock propagation direction: A for aligned; P for perpendicular.

The blue arrow denotes the shock direction.
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mitted wave propagating into the clump will dominate over any relaxation driven
effects from the internal magnetic field. To confirm this we also define energy param-
eters of the shock clump interaction where oy, = K/FEy, and op = K;/Ep. These
are ratios between shock kinetic energy density o< psv2 and the thermal or average
magnetic energy density contained in the clump, respectively. From parameters for
our simulation we then have o, ~ 222 and og ~ 33. Thus, although the clump is
initially magnetically dominated, the shock has higher energy densities than either
the thermal or magnetic energy contained inside the clump. Given these conditions
and our choice of 7. < T we expect that most of the simulation evolution will driven
by the shock and not internal relaxation.

We note that the cooling time scale for the transmitted shock 7. = FE;/ E, =
kT,/nA is below the clump crushing time to ensure noticeable cooling and is given
by

Tp &2 4A8y1s K Te. (5.4)

Therefore we are in the regime of “weakly cooling” inside the clump where the mag-
netic energy is concentrated, i.e., for the transmitted shock, the ratio of cooling time

against crushing time x = 7,./7.. < 1. The cooling length scale can be calculated as:
Ly = VpsTy (5.5)

where v, is the post-shock sound speed:

Tl
by — /VmB_Ap (5.6)

From the above equations, we can calculate the ratio of the clump radius to the

cooling length behind the transmitted shock:
chi, =r./l, = 5.64 (5.7)

Therefore one clump radius contains 5 cooling length scales. The bow shock in our
simulations has a cooling time that is longer than the evolutionary timescale of the
flow and remains adiabatic in its dynamics. Notice that although the situation we

consider here is freely scalable, the condition “weakly cooling” should always be
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satisfied. Since the cooling length scale does not depend on the size of the clump, it
can become extremely small comparing to the clump radius when the scale length is
increased and thus become a dominating process after applying such a scaling.

In order to ensure V - B = 0, the self-contained magnetic field is set up by first
choosing a vector potential distribution, and then taking its curl. The geometry of
the toroidal field is best demonstrated using the cylindrical coordinates. The vector

potential A has the following distribution:

A, =0 (5.8)
Ap=0 (5.9)
fa/r2—z2—r2 .
By or =7, ifr < fy/r2—22
A, = 2 d (5.10)

Bo P iy s f 7= 2
where By, is the desired peak magnetic field intensity, and r, 6, z take their usual
meanings in a cylindrical coordinate system: r is the distance to the z-axis; 6 is the
azimuthal angle; z is the distance to the x — y plane. f < 1 is an attenuation factor
to cut off the magnetic field when v/r2 + 22 > r,, i.e. outside the clump. This vector

potential distribution gives the following B distribution upon taking the curl:

B, =0 (5.11)
By tor—, iftr < fy/r2—22

By={ =3 d (5.12)
BO,tOT(lc_Ta lf r > f\/?”g — 22

B, =0 (5.13)

For any given z, the magnetic field intensity peaks at f \/1“2—722 If f is close to
1, the field will be concentrated near the outer edge of the clump. In the presented
simulations, we take f = 0.9.
The poloidal field is best demonstrated using the spherical coordinates. It has a
vector potential distribution of:
A, =0 (5.14)

A — By poi(re — 7)*rsinf (5.15)

2
2r?
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Ay =0 (5.16)

where By o is the desired peak magnetic field intensity, r, 0, ¢ are the distance to the
origin, the polar angle and the azimuthal angle respectively. Notice here r and 6 are
defined differently compared to cylindrical coordinates. The curl of this vector field

is:

B, =0 (5.17)
By =0 (5.18)
Bopor(1e — c — 3r)sind
B, — 0.p01 (T 7"34(7" T)sin (5.19)

We observe that the magnetic field energy density B? peaks at the center r = 0 and
has a weaker secondary maximum at r = 2r./3. The field attenuates to zero at the
outer edge of the clump r = r.. There is another zero point in between r = 0 and
r=r. r =r./3. The toroidal and poloidal field setup are orthogonal to each other,
and can be combined into a more general self-contained magnetic field distribution.
The cases presented in our paper form the basis to understand more complex self-
contained magnetic field configurations.

We run the simulation from time ¢t = 0 to time ¢ ~ 333yrs or ¢t ~ 3.57... We will

use the clump crushing time 7.. as our unit of time throughout the rest of the paper.

5.3 Simulation Results

5.3.1 Shocked clumps with a self-contained strong ordered
field

We begin with the simulations in which the internal self-contained magnetic field is
relatively strong (fa,y = 0.25). Recall in what follows that the incident shock kinetic
energy is dominant in the initial interaction even though the clump is magnetically
dominated in terms of its own initial configuration. Figure 5.3 shows case TAS:i.e. the
internal magnetic field is toroidal and aligned with the shock normal. Panels run from

top to bottom and correspond to different evolutionary times: ¢ = (Tee, 27¢c, 3.57¢c).
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At early times, t < 7., the shocked clump evolution appears similar to that of the
unmagnetized case (not shown). The usual pair of shocks form: a bow shock facing
into the incoming flow and a transmitted shock which propagates into the clump.
Note that the transmitted shock in our simulations is radiative meaning that thermal
energy gained at the shock transition is quickly radiated away. With the loss of
thermal pressure support the shock collapses back towards the contact discontinuity.
In this regime shock regions becomes thin and post-shock densities are high [Yirak et
al (2010)]. In our simulations, only the bow shock cools effectively which is evident
at the thin boundary flows.

The effect of the toriodal field becomes particularly apparent in the morphology
after a crushing time. At the middle frame in figure 5.3 (27..) we see the clump
collapsing towards the symmetry axis due to the pinch by the toroidal magnetic field.
This behavior is in contrast to the hydrodynamic or MHD adiabatic case with parallel
fields in which the shocked clump material expands laterally and is then torn apart
by RT instabilities. Even in radiative hydrodynamic cases the shocks tend to flatten
the clump which then break up into clumps [Yirak et al (2010)]. Only in uniform
perpendicular field cases do we see situations where the flow becomes shielded from
RT instabilities. The internal toroidal field simulations show something different
entirely however. Here the tension force from the compressed internal toroidal field
is strong enough to suppresses the lateral expansion. This inward directed tension
controls the subsequent evolution.

The ongoing compression within the clump driven by the tension of the torodial
field restricts the downstream flow. Thus only a limited turbulence wake forms.
The compression of the clump and downstream flow into a narrow cone continues at
later times as can be seen in the frame corresponding to t = 3.57... By this time
shocked clump has become compressed into a very narrow conical feature resembling
the "nose cone” observed in the MHD jet simulations [e.g. Frank et al (1998), Lind
et al (1989)]. The development of an dense streamlined clump by the end of the
simulations indicates that for these configurations the long term evolution will be
simply slow erosion of the clump without significant fragmentation.

When the toroidal axis is perpendicular to the shock normal however the evolution
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is quite different. In figure 5.4 we show 3 snapshots of density for run TPS. In this
case the field is attempting to pinch the clump onto z axis (a compression ”inward”
towards the clump axis along the x and y directions). The shock however only
produces a compression along the x axis. The differential forces on the clump do
yield on transient period of flattening as is seen in both hydrodynamic and uniform
field MHD simulations. However the presence of the internal toroidal fields alters the
internal distribution of stresses. The result is a differential aerodynamical resistance
to the flow over the clump as it becomes immersed in the post-shock region. Note that
the magnetized clump is easier to distort along z axis compared to y axis where tension
forces are at work. Thus at ¢t = 7. we see the clump becoming ellipsoidal or football
shaped. The structural coherence that the tension force provides in y direction during
the compression phase continues to shape the subsequent flow evolution. By ¢ = 27,
oblate clump which continues to be eroded by the incoming wind begins developing
a concave morphology along the z axis. The subsequent formation of a ”banana”
shaped configuration tilts the field along the body of the clump shifting the position
of the local toroidal axis relative to the incident flow. Thus the clump begins to
fragment mostly along the z axis because of a lack of field tension in this direction.
In addition a ring-like feature develops along the outer extent of the clump where the
field is initially concentrated. By the end of the simulation, the clump has fragmented
along the z axis from erosion and cooling, and evolves to an array of cold, magnetized
”clumplets”.

Note that the perpendicular toroidal case produces a turbulent wake that occupies
a much larger volume than the parallelly oriented case. As we will see the development
of such an extended wake is well-correlated with the degree of mixing between clump
and ambient medium.

We now turn to the poloidal strong field cases. Figure 5.5 shows the simulation
of a shocked clump when the internal field is poloidal and aligned with the the shock
normal (case PAS). In this run, there is a strong field concentration of field at the
clump axis, as well as a relatively weak field near the clump surface. When the axis is
aligned with the shock normal, we can see that during the compression phase t = 7,

the clump is compressed radially as in the unmagnetized case. Note however that
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Figure 5.3 Case of strong toroidal only, aligned with shock normal. Evolution of
clump material at 1, 2 and 3.5 clump crushing time. The color indicates clump

material concentration, normalized by inffal value.



Case TP
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Figure 5.4 Case of strong toroidal only, perpendicular to shock propagation direction.
Evolution of clump material at 1, 2 and 3.5 clump crushing time. The color indicates

clump material concentration, normalizecfi%y initial value.



a depression develops along the clump axis as the incident flow’s ram pressure is
relatively unimpeded there by the magnetic field. Because the field along the axis is
aligned with the flow direction, the evolution resembles the global field parallel case
[Mac Low et al (1994)]. However, by ¢t = 27, the differential stresses of internal
self-contained poloidal field yield a different evolution compared to both our previous
toriodal cases and the uniform field cases.

While the clump expands laterally as in the unmagnetized case, it then develops
a hollow core. The initial phase of the axial core were already apparent at the earlier
times however now we see that the outer regions corresponding to the domains closer
to the clump surface with relatively strong magnetic field retain (weaker than the field
on the axis, but stronger than the region surrounding the r./3 point. See Appendix A)
their coherence while the incident flow has evacuated the area surrounding the axial
core. Thus the poloidal field yields a coherence length associated with the curvature
(and tension) of the field around its circumference. Regions closer to the axis with
weak initial field get distorted, compressed and driven downstream while the regions
with a strong field or fully flow-aligned field better resist the compression.

The ”shaft” shaped feature surrounded by the hollow core has a relatively low
£ compared to the rest of the clump. It gradually deforms as a result of field line
tension (squeezing outwards towards the clump periphery away from the axis) on the
timescale of ¢ = 75, which for these runs is 2.87... Consequently we see at the last
frame t = 3.57,., that the "shaft” disappears and the clump is fragmented into an
array of cold, magnetized ”clumplets”, similar to the TP case.

Figure 5.6 shows the simulation with a strong internal poloidal field oriented
perpendicular to the shock normal (coded PPS). The influence of the different field
orientation is already evident at the first frame ¢t = 7... The initial compression phase
has produced an ellipsoidal clump distribution in a similar manner as the toroidal
perpendicular simulation (Figure 5.4). In this case the internal stresses of the poloidal
field change the oriental of the ellipse while also producing substructure due to the
smaller scale of field loops (R ~ 0.5r, for the poloidal field rather than R ~ r. for
the toroidal case). By t = 27, we see a "shaft” and a "ring” structure develop as

in the PAS case, but now the smaller scale of the loops (radius of curvature) allow
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these structures to be partially eroded by the incoming shock. The ”shaft” is then
fragmented by the shock rather than the field pinch, and the "ring” leaves an extended
U-shape structure. As a result, two large clumplets located on the y — z plane form

at 3.57... For configurations TA and PP, the initial setup is entirely axisymmetric.

5.3.2 Shocked clumps with a weak self-contained ordered

field

We now look at the results where the contained magnetic field is relatively weak
compared with the previous cases (S = 1). In this regime we still expect to see the
field exterting influence over the shock clump evolution but the final outcome on the
flow, in terms of global properties, may not sort cleanly between different initial field
configurations.

Figure 5.7 shows the simulation of a shocked clump when the internal field is
torodial and aligned with the the shock normal (coded TAW). Here, the most signif-
icance difference comparing to the TAS case is that the post-shock clump material
does not collapse into a core, instead the ram pressure of the incident flow pushed
through the clump axis after the initial compression phase 7. < t < 27.. This in-
dicates that the pinch force provided by the toroidal field no longer overwhelms the
stresses produced by the flow as it does in the case with stronger initial field and
lower initial og. By 3.57.., the clump evolves into a series of cold dense clumps as
in the hydrodynamic case although the position of the clumps appears to reflect the
original toroidal orientation of the field.

Figure 5.8 shows the case of weak internal toroidal field with its axis perpendic-
ular to the shock normal (coded TPW). Compared to the TPS case in the previous
subsection, we can see that the clump opens up at ¢t = 27, similar to the TAW case
because of the lack of strong pinch forces. One can still see the the effect of the field in
the orientation of the two nascent clumps forming aligned with the z-axis. Indeed by
3.57¢¢, the clump material forms an array of ”clumplets” with a stronger distribution
along z axis than in x or y which is similar to TPS case. Thus like the TAW case

even a weaker self-contained magnetic field still yields an influence over the global
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Figure 5.5 Case of strong poloidal only, aligned with shock normal. FEvolution of
clump material at 1, 2 and 3.5 clump crushing time. The color indicates clump

material concentration, normalized by inifthl value.
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Figure 5.6 Case of strong poloidal only, perpendicular to shock propagation direction.
Evolution of clump material at 1, 2 and 3.5 clump crushing time. The color indicates

clump material concentration, normalized by initial value.



flow evolution.

Figure 5.9 shows the simulation of a shocked clump when the internal field is
poloidal and aligned with the the shock normal (case PAW). Here the initial mor-
phological evolution is similar to that of the PAS case (Figure 5.5): at 27, a "shaft”
feature is formed, with a "ring” shaped feature surrounding it. By 3.57.., the shaft is
destroyed by the internal pinching and the "ring” feature fragments into an array of
clumplets due to field pinching and cooling. Notice that the size of the "ring” feature
and the spread of the resulting clumplets is smaller compared to the PAS case: an
effect that can be attributed to the weaker initial field and its resulting hoop stresses.

In Figure 5.10 we show the simulation with a weak internal poloidal field oriented
perpendicular to the shock normal (case PPW). The evolution is comparable with the
PPS case. Once again the U-shaped feature which forms after the shock has passed
through the entire clump is less pronounced due to reduced pinch forces. Note that
we see that the final fragmentation produces two large clumplets at 3.57.

The overall evolution of the weaker field cases shows the effect the field has in
terms of the final spectrum of fragments produced by the shock-clump interactions.
Unlike purely hydrodynamic cases the fragmentation of the initial clump into smaller
”clumplets” does depend on the the initial field geometry and its orientation relative
to the incident shock at least for the evolutionary timescales considered in this study.
Thus even in cases where the field does not dominate the initial energy budget of
the clump, the shock dynamics does depend on the details of the initial field. Note
also that in all cases a nearly volume filling turbulent wake develops behind the
clump at later evolutionary times. For TA and PP configurations, the initial setup
is axisymmetric. But as a result of numerical instabilities and finite domain size, we
can observe asymmetry at late frames in Figures 3, 5, 7 and 9.

Magnetic fields can be important in suppressing the instabilities associated with
shocked clumps. According to Jones et al (1996), the condition for the magnetic field
to suppress the KH instability is that § < 1 for the boundary flows. The condition
for the magnetic field to suppress the RT instability is that § < /M = 10. For
both strong and weak field cases presented in our paper, the 3 at the boundary flows

has a value between 1 and 10. Therefore the KH instability is present in all of our
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Figure 5.7 Case of weak toroidal only, perpendicular to shock propagation direction.
Evolution of clump material at 1, 2 and 3.5 clump crushing time. The color indicates

clump material concentration, normalized $y initial value.
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Figure 5.8 Case of weak toroidal only, perpendicular to shock propagation direction.
Evolution of clump material at 1, 2 and 3.5 clump crushing time. The color indicates

clump material concentration, normalized ‘i)y initial value.
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Figure 5.9 Case of weak poloidal only, aligned with shock normal. Evolution of clump
material at 1, 2 and 3.5 clump crushing time. The color indicates clump material

concentration, normalized by initial value®
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clump material concentration, normalized Gy initial value.



Number Density (per cc)

300.0

—72.08

—17.32

4.162

1.00

118

—1.000

— 0.3162

— 0.100

0.03162

—0.000

Distance (100 a.u.)

Figure 5.11 Snapshot of shocked clumps cutthrough the center of the domain, at
t = 2.57,., for the TAW and PAW cases. The upper panel corresponds to the density,

the lower panel corresponds to 1/4.

cases, shredding the clump boundary flows and converting them into downstream
turbulence. However, even for the weak self-contained field cases, the RT instability
is suppressed. To demonstrate, we map the density and 5 (presented by 1/ in
figure 5.11) for TAW and PAW cases in figure 5.11. We observe that the shocked
clump material develops a streamlined shape in both cases. The region where density
is concentrated has 1/8 > 0.1.

Finally to illustrate the post-shock distribution of magnetic field, we plot the
density and field pressure by cutting through the x — y mid plane of the simulation
box in figure 5.12. It shows that the field follows the clump density distribution, as

is expected in our simulations where the diffusion is only numerical and weak.

5.4 Mathematical Model and Analysis

Figure 5.13(a), (b) show, for the strongly magnetized clump cases, the evolution

of kinetic energy and total magnetic energy respectively. Figure 5.14 shows the the
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bottom, respectively. The upper half part of each panel shows the clump density, the

lower half part shows the magnetic pressure in pseudocolor.
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Figure 5.13 Global quantities of the strong self-contained field case: (a) Time evolu-
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magnetic energy.
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analogous plots for the weak field cases.

In figure 5.13(a), we observe that prior to 7., the kinetic energy of the clump
gained from the incoming shock is similar in all cases. Later, the curves begin to
diverge, reach a peak and then descend. The descending feature after 37.. is caused
by clump material leaving the simulation box. The identical ascending prior to 7.
and the later diverging behavior for different field configurations will be explained in
the subsequent subsection. Similar trend can also be observed for the weak contained
field cases of figure 5.14(a).

In figure 5.13(b), we observe that the total magnetic energy evolution for the
four field configurations are different: TAS case grows and has the highest magnetic
energy at 7.., PAS case fluctuates and has the lowest magnetic energy 7... After 7.,
the TAS curve begins to drop while the other two perpendicular cases continue to
rise. At the end of 37.., the TPS case has the most magnetic energy, followed by
PPS, then PAS. The TAS case dropped to the lowest. In figure 5.14(b), the order of
contained magnetic energy prior to 7. is the same as in figure 5.13(a). However, the
TAS curve does not drop afterwards: it continues to rise and at the end of 37, it
ranked second in terms of total magnetic energy behind the TPS case. The rest cases
have similar feature compared to their strong field counterparts. The magnetic field
energy evolution is clearly related to the internal field configuration.

In summary, the kinetic energy transfer and the total magnetic field variation can
be determined by the initial structure of the self-contained magnetic field. To account
for the results exemplified in the figures, we propose that the shock-clump interaction

incurs two phases, a compression phase and an expansion phase.

5.4.1 Modeling the Compression Phase

In the evolutionary phase of the shock-clump interaction the transmitted shock
passes through the clump and drives it higher densities. After this compression phase
energy is then stored in the form of clump thermal pressure and increased magnetic
field pressure. During this phase, the kinetic energy of the clump resides mostly in

the form of linear bulk motion and because of the incoming shock, this initial kinetic
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energy transfer to the clump is similar for all of the clump cases we have considered.
The magnetic energy growth depends on the initial magnetic field geometry because
the shock compression only directly amplifies the field components perpendicular to
the shock normal.

We now develop a mathematical model that describes the magnetic field energy
for the compression phase. We define /) and [, as the thicknesses of the clump along
and perpendicular to the shock normal respectively. We assume that the clumps are
initially spherical so initially [, , = [, = |, = [, = [}, and the shock propagates in
the z direction. Subsequently, [, corresponds to the x direction and I, refers to the
y and z directions, assuming that the compression is isotropic in the y — z plane.

Assuming that magnetic reconnection is slow on the time scales of the compres-
sion phase, magnetic flux conservation can be used to estimate the magnetic energy
increase from compression. The energy associated with a uniform field in the x — 2
plane increases o (1)~ whereas the energy of a uniform field in the z direction will
increase o< lI4. Then, assuming that the initial field configuration has n B3 /8 stored
in the perpendicular component, (1 — 7)B2 /87 stored in the parallel component, we

obtain the magnetic energy density after compression:
B B? 1
T 8t 8w
where r. is the initial clump radius. We use [, and [, j, to denote the length on the

€B (B3 (2re/1)* (2re/U))* + (1 — n) By (2re/11)"], (5.20)

two directions for the case where the clump does not contain any magnetic field, i.e.

hydrodynamic case. The magnetic energy density can then be rewritten as:

es = (1/8m) (B3 (2re/lyn) (/1) Uy /1) + (1= m) B3 (2re/Lyn) (L /1) (11 /1)),

(5.21)

Assuming that the post compression clump are self-similar (i.e., different in size,

but with the same shape) then the ratio of perpendicular and parallel scale lengths

is a constant during compression. This allows us to define a constant shape factor e,
given by

e= (ZH/ZL)2 = (l‘|7h/th)2. (5.22)

To articulate the influence of the magnetic field compared to a purely hydrody-

namic clump we assume that the ratio of the magnetized to unmagnetized clump
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dimensions in a given direction after compression is inversely proportional to the

ratio of forces incurred by hydro and magnetized clumps respectively. That is:

F—fb

hiw/ly = =1- fp/F, (5.23)

where F' is the force exerted by the transmitted shock, and fg is the "repelling” force
exerted by the self-contained magnetic field (see appendix B). The ratio of these two
forces is proportional to the magnetic and kinetic energy densities, that is
aB?

)
6mpsv3

fB/F = (5.24)

where « is a dimensionless number that depends on the magnetic field configuration,
and ps and v, are the density and velocity behind the transmitted shock. For exam-
ple, if the repelling force is from the magnetic pressure gradient V Pg only, and the
magnetic field is distributed in a thin shell of radius r./3, then
_35B

T, 8T

[ (5.25)

per unit volume. On the other hand, the ram pressure acting on the clump has:

2,2

_PsUSTr

- 3
4mr3 /3

(5.26)

per unit volume. Therefore from the above two expressions we obtain that in the case
considered, o = 3.

Because the self-contained magnetic field is curved with a positive radius of curva-
ture, a magnetic tension force in J X B is present and can cancel some of the repelling
force from the field pressure gradient. For instance, in the toroidal perpendicular
case, the tension force along the x direction is 9, B%/4w. The tension force therefore
reduces a to a = 1. We define p as the ratio of the initial averaged clump magnetic
energy density and the external energy density driving the shock. We also assume

1 << 1 during the compression phase. Specifically,

B? 2
= 1. 5.27
6mpsv2  3op < ( )

1

We also define the hydrodynamic compression ratio
Ch = 2r./ln)". (5.28)
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Combining equations 5.21, 5.23 and 5.28, the magnetic energy density after com-

pression can then be written as
ep = (BiChe/8m)(n + (1 —n)e)(1 — ap)*. (5.29)

Multiplying this total magnetic energy by the volume of the compressed clump gives

the total magnetic energy,

Ep = (BiCh/8m)(n+(1—n)e®) 1—ap) 7lflL = (B3Cul ,/8)(n+(1—n)e?) (1—ap) (I /110)°.
(5.30)
Assuming that all of the different clump field configuration cases evolve to similar

shapes after compression (i.e. that e is constant) we then have
Ep = eBp(n+ (1 =n)e)(I —ap) = Ex(n+ (1 =n)e)(1 — ap), (5.31)

where Epg = BgC’hlﬁﬁ /8¢ is the total magnetic field energy in the absence of any
repelling tension force from the self-contained field, and Ej) = eFjg. Different initial
field configurations lead to different strengths of the repelling force and field ampli-
fication during the compression and therefore modifying both « and n. Using the
strong field case as example, the n parameter for the TA, TP, PA, PP cases are 1,
0.5, 0.25 and 0.75 respectively. From the field gradient and the magnetic tension, we
can use « for these four cases: 3, 1, 1 and 3 (See Appendix B). Using p ~ 0.02 (from
Section 2, op ~ 33) and e ~ 0.25 (from the approximated ratio l;|/l, ~ 0.5), we find
the total magnetic energy for the TA, TP, PA, PP to be: 0.94F), 0.61F), 0.43F),
and 0.76 )y, respectively. Therefore at the end of the compression phase, the total
magnetic energy from high to low is: TA, PP, TP, PA. These theoretically predicted
ordering exactly agrees with the line plots of figure 5.13(b) from the simulations.
The simulations also justify the underlying assumption of equation 5.23, namely
that the energy transferred from the shock to the clump material is initially similar
in all cases regardless of the initial field configurations because the field is weak with

respect to the impinging flow. This is expressed as

(F — fB)lH ~ FlH,h (532)
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and is evidenced by the kinetic energy transfer plots figure 5.13(a) and figure 5.14(a):
During the compression phase, all clumps receive identical kinetic energy flux. Note
that our model in the main text ignores differences in e. In the Appendix C we

derived the corrections to equation 5.31 when differences in e are allowed.

5.4.2 Expansion Phase

Unlike the compression phase, in the expansion phase a large fraction of the kinetic
energy of the clump comes from expansion motion parallel to the shock plane. How-
ever the specific evolution of this phase depends on which two distinct circumstances
arise at the end of the compression phase: Either (1) the magnetic pressure gradient
and tension force are small compared to the pressure force exerted by the shock or
(2) the magnetic pressure gradient and tension force dominate over the shock.

If the shock is still dominant at the end of the compression phase (circumstance
1), the clump will expand similarly to the hydrodynamic case. During this phase, the
magnetic field inside the clump acts against this expansion: the clump material is
doing work to the self-contained magnetic field (mainly via field stretching) in order
to expand. Thus, in general, more magnetic energy at the end of the compression
phase means a stronger force opposing the expansion. The kinetic energy in the
expansion phase shows differences for the different field configurations: the higher
the self-contained field energy at the end of the compression phase, the lower the
kinetic energy transfer efficiency in the expansion phase. The ordering of kinetic
energy transfer efficiency in the expansion phase from high to low is then PA, TP,
PP, TA. This again exactly agrees with our plots figure 5.13(a) and figure 5.14(a).

In addition for circumstance (1), the expansion phase also sees a switch in the
nature of field amplification: the field is amplified according to how much kinetic
energy is transferred into the expansion motion. Thus the ordering of the magnetic
field amplification in the expansion phase will be the same as the ordering for the
kinetic energy transfer in that phase. In figure 5.14(b), the weak field cases follow
this pattern: the TAW, TPW and PPW curves reverse their ordering when entering

the expansion phase, giving them the same ordering as the kinetic energy transfer
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plot figure 5.14(a). The PAW case does not conform with the prediction of the model
because most of the field lines are parallel to the shock propagation direction so that
they do not get amplified by the stretching from the expansion motion on the y — z
plane.

If the shock is no longer dominant at the end of the compression phase (circum-
stance 2 above), then the clump evolves under the influence of a significant Lorentz
force. The comparison between the TAS (Figure 5.13(b)) and TAW (Figure 5.14(b))
cases exhibits the transition and the distinction between circumstance (1) vs. circum-
stance (2) evolution: at the end of the compression phase, the TAW case expands
while the TAS case shrinks.

The requirement for these distinct evolutions to arise can be predicted using a
dimensionless ratio calculated from the parameters of the initial field configuration.
Assuming that the pressure from the expansion in the direction perpendicular to the
toroidal field lines in a TA case is 1/3 of the total post shock ram pressure, the ratio

between the total magnetic pressure and the pressure of the expansion motion is given

by
B2Ce/8 1— 1—ap)t
psv3/3
Using the parameters o = 3, Ustrong = 0.02, fyear = 0.005, and a compression
ratio Cj, = (2R/1)5)* ~ 3.5 =~ 150 we find that r, ~ 1.3 for the TAS (circumstance

2) case and r, &~ 0.4 for the TAW case (circumstance 1) respectively. Intuitively the

threshold for the toroidal configuration to expand would require ., < 1. Thus in the
TAS case, the field pinch is dominant at the end of compression phase and the clump
collapses down to the axis; whereas in the TAW case the expansion is dominant and

the clump behaves similar to a hydrodynamic case.

5.4.3 Geometrical Factor of Magnetic Repelling Force «

Above, we have worked out the magnetic repelling force for the TA case:

_ 35

T, 8T

/B (5.34)
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which gives the parameter o = 3. For the TP case, the magnetic tension force is

pointing inward with:
1B
o dw

fr

assuming the radius of curvature for the magnetic field lines is R. This tension force

(5.35)

cancels some of the gradient force, which brings a to 1.

For the PA case, the repelling force from the field gradient remains the same (this
is because the average self-contained field pressure is an invariant for the four ”strong
field” cases). But the curved magnetic field on the outer edge of the clump has an

average energy of BZ/2. The tension force is thus:

1 B2
fr= g XW (5.36)

where the field loop’s radius of curvature is 7./2. This tension force also brings «
down to a = 1.

For the PPS case, the tension force from the outer edge of the clump can be can-
celed by the tension force from the center of the clump so that their net contribution
to the total repelling force is zero. Therefore we get roughly the same « as in the TA

case.

5.4.4 Correction in the Shape Factor e

In deriving equation 7?7, we used an assumption that no matter what the self-
contained field configuration is, the clump is always compressed to a self similar
shape if the hydrodynamic setup is unchanged. However, we know that when the
self-contained field is ordered, the force it exerts on the clump is inhomogeneous
depending on the geometry. The difference in the repelling force therefore results in a
difference in the shape factor e introduced in Section 5.1. We now look at how large
this correction is for the four studied simulations.

Let us go back to equation ?7. Assuming the force exerted by the shock on
the clump is different on the perpendicular and parallel directions: the force on the

perpendicular direction is only a portion of that on the parallel direction, and this
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portion is fixed for all the cases with the same hydrodynamic setup:
Fy=~F, (5.37)

where 7 is fixed. Then following the same procedure as in Section 5.1, we have:

(1 — ay/“t/,)/) )

ep = En(n(1 — aup) + (1 =) T

(5.38)

where o, and «a,, denote different repelling forces from the self-contained field on the
x and y direction.

As in Section 5.1, a, for the simulated cases TAS, TPS, PAS, PPS are 3, 1, 1
and 3. Since the perpendicular o, is just the aligned o, and vice versa, we know
that the o, for these four cases are 1, 3, 3 and 1. We use the same parameters as in
Section 5.1: p = 0.02. We assume the incoming shock engulf a spherical sector of the
clump with a cone angle 26.. Then the compression force applied on the y direction
is a fraction of that of the initial incoming shock. This fraction is % foeﬁ %sz’nQQQd@.

During the compression process, . varies from 0 to /2. Therefore we can estimate

v as:
2 [/ [0 Lsin?20d6

= — 2 df. = 0.125 D.
/2 J, /2 0 (5:39)

where the inner integration calculates the ratio of average pressure applied on the

v

perpendicular direction when the compressed part of the clump is a spherical cone
with cone angle 6.; the outer integration calculates the average over the compression
process where 0, varies from 0 to /2. The factor 2 results from the fact that the
perpendicular compression happens on both +y and —y directions.

We can calculate the corrected compressed magnetic field energy for the TAS,
TPS, PAS and PPS cases. The results are 0.94F),, 0.63E}, 0.44F, and 0.72E},, for
the TAS, TPS, PAS, PPS cases respectively. Comparing to the results presented in
Section 5.1: 0.94F), 0.61FE),, 0.45E) and 0.89E) for the four cases, we find there is
a positive correction to the cases with n < 1. The ordering of the field amplification
factor remains unchanged. Further sophisticated modeling is possible by taking into
consideration the dependence of the Lorentz force on the compression ratio: the

further the compression, the smaller the magnetic field length scale thus the stronger
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the repelling force. This results in a model with an integral equation, on which we

did not discuss in this paper.

5.4.5 Mixing of Clump and Ambient Material

Figure 5.15(a), (b) show the mixing ratio of wind and clump material at 7. and
37, for the strong field cases. Figure 5.16(a), (b) show the mixing ratio of wind
and clump material at 7.. and 37, for the weak field cases. We define a wind-clump

mixing ratio in a single computational cell as
2min(ne, ny)
Ne + Ny

UV =

, (5.40)

where n. and n,, denote the clump and wind number densities, respectively. This
definition shows that ¥ = 1 means perfect mixing: there is equal number of clump
and wind particles in the cell, while » = 0 means no mixing at all. In figure 5.15,
we see that the mixing ratios for the four strong self-contained field cases are almost
identical at early times. This is consistent with the fact that at early times the clump
as a whole is in the processes of being accelerated as along the shock propagation
direction. The only mixing between clump and wind occurs at the edges of the
clump from the interaction with the incoming shock. The strong field prevents strong
mixing.

In the weak magnetic field cases, the toroidal configurations do not see a sig-
nificant increase in the early time mixing ratio compared to the strong field case
(Figure 5.16(a)). This is because the toroidal case has most of its magnetic field
concentrated at the edges of the clump (See Appendix A). Thus the average plasma
£ on the outer edge is still small enough to contain the clump material. In the weak
poloidal configuration cases however, the magnetic field is concentrated at the center
of the clump and accordingly the PAW and PPW cases have the largest magnetic
on the outer edge of clump, making them the most susceptible to early shock erosion.
This explains the significant increase we see in the initial mixing ratio in the PAW
and PPW cases (Figure 5.16(a)).

The late mixing ratio depends on how much kinetic energy is transferred from

wind to clump. At late times the PA configuration has the highest mixing ratio of
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Figure 5.15 Wind-clump mixing ratio for the strong self-contained field case: (a) at
Tee- (D) at 37... The color codings and their corresponding simulations are labeled in
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the four studied cases. The PP and TP cases have intermediate mixing ratios, and
the TA has the lowest mixing ratio. This ordering agrees with the ordering of kinetic
energy transfer: the more force resisting compression from the self-contained magnetic
field in the early phase the less the kinetic energy transfer occurs in the expansion
phase, and the less the mixing. The late mixing ratio also partially depends on the
efficacy of enhanced turbulent mixing downstream. The 3-D images in the previous
section Figures 3 to 10, we can identify the downstream turbulence of the TA and

PA cases as the least and most volume filling respectively.

5.5 Concluding Remarks

Using 3-D AstroBEAR MHD simulations, we have demonstrated that shocked
clumps with self-contained internal magnetic fields show a rich, but qualitatively
understandable behavior not seen in previous simulations of shock-clump interactions
which employed ordered background fields extending through both the clump and the
ambient gas.

We find that the post-shock evolution depends strongly on internal field mor-
phology. The energy transfer from wind to magnetic field and the mixing of wind
and clump material also depend on the field geometry. In general, the more perpen-
dicular the clump magnetic field is to the direction of shock propagation, the more
aerodynamic resistance the field provides, and the less the mixing and energy transfer
occurs. Compared to the uniform field cases studied in Jones et al 1996, both pro-
vide protection against shock erosion and mixing when the magnetic field is oriented
perpendicular to the shock normal. However, the uniform field case relies on the
stretching amplification of the magnetic field along the clump profile thus acting as a
“shock absorber”, the contained field case relies on the internal field tension to hold
the clump material together against expansion.

We have studied the mathematical model of the evolution by dividing the process
into “compression” and “expansion” phases. Since the compressed magnetic field can
greatly influence the morphology during the expansion, we estimate the amplification

by deriving equation 5.31. The qualitative behavior of different cases studied in the
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simulation provides good agreement with our model.

The extent to which clump material mixes with the wind material also depends
primarily on the field orientation: in general, the more the initial field is aligned
perpendicular to the shock normal, the better the clump can deflect the flow around
the clump and the less effective the mixing. Equivalently, the better aligned the field
is with the shock normal, the more effective the clump material gets penetrated by

the incoming supersonic flow, gains kinetic energy in expansion, and enhances mixing.
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Chapter 6

Triggered Star Formation

6.1 Introduction

Triggered star formation (TSF) occurs when supersonic flows generated by distant
supernova blast waves or stellar winds (wind blown bubbles) sweep over a stable
cloud. In realistic environments, this is likely to occur when such a flow impinges the
heterogeneous regions within molecular clouds (Roberts (1969), Hillenbrand (1997),
Kothes et al (2001), Bonnell et al (2006), Leao et al (2009)). While it is unclear
if TSF accounts for a large fraction of the star formation rate within the galaxy, the
concept has played an important role in discussions of the formation of our own solar
system because it offers a natural way of injecting short lived radioactive isotopes
(SLRI’s) like 2 Al and %°Fe into material which will then form planetary bodies.

In light of SLRI observations, a series of studies dating back to the 1970s (Cameron
et al (1977), Reynolds et al (1979), Clayton et al (1993)) have attempted to quantify
the ability of a blast wave or stellar wind to both trigger collapse in a stable cloud
and inject processed material. Because of the complex nature of the resultant flows,
these studies have relied strongly on numerical simulations (Boss (1995), Foster et
al (1996), Vanhala et al (1998), Vanhala et al (2002)). In a more recent series of
papers by Boss and collaborators (Boss et al (2008), Boss et al (2010), Boss et al
(2013)) the shock conditions needed for successful triggering and mixing were mapped

out. In general, the higher the Mach number of the shock, the more difficult it is to
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trigger collapse. Faster shocks can shred and disperse the clump material before it
has time to collapse. However faster shocks also allow better mixing by enhancing
Rayleigh-Taylor instability growth rates. Boss et al (2010) have shown that for a
stable cloud of 1M and radius of 0.058 pc, the incoming shock needs to be slower
than 80 km/s to trigger collapse. The shocks also need to be at least 30 km/s to yield
10% of blast material (by mass) mixing into the cloud. Thus there is a relatively
narrow window, in terms of shock Mach number, where both triggering and mixing
can be achieved.

Boss et al (2010) and Boss et al (2013) further pointed out that in order to explain
the abundance of 2°Al in the Solar System using triggering, the supernova shock
needs to satisfy additional width requirements besides the shock speed condition.
Finally, Gritschneder et al (2012) pointed out the importance of cooling in such
a triggering scenario, detailing the condition for collapse of the cloud fragments by
thermal instability. We note also Dhanoa et al (2014) who studied the possibility
of forming low-metallicity stars by supernova shock triggering with simulations and
Vaidya et al (2013) who studied the collapse of magnetically sub-critical cloud cores.

These studies have done much to reveal the details of TSF but they have been
restricted to the early stages of the resulting flow pattern. The full evolution leading
to a collapsed object (a star) and its subsequent gravitational interaction with the
surrounding gas has yet to be studied. Part of the difficulty has been the numerical
challenge of generating a sub-grid model for the collapsing region that adequately
represent stars. This has left many questions unanswered. For instance, what is
the mass accretion rate of such a star formed by triggering? What is the accretion
history of such a star? Does a trigger-formed star also have a disk when rotation in
present in the cloud? If so, is the disk stable? Some of these questions, such as disk
stability, have been studied in other contexts: Ouellette et al (2007) explored disk
ablation when the disk was swept over by a supernova blast wave and ejecta. They
found the disks to be long-lived and relatively stable in spite of the supernova blast
impact. Their disks were not, however, formed by triggering but were considered to
be pre-existing. Determining the surviving disk mass and the mixing between cloud

and wind material is important for understanding the role of TSF in Solar System
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formation and/or in supplying SLRI abundances.

We note that the issue of triggering is of more general interest than discussions
of SLRIs. For example the in the HII regions associated with the Carnia nebulae a
number of elongated pillars are seen with jets emerging from the head of the pillar
(HH901 and HH 902 Smith et al. (2010)). The presence of the jet is an clear indication
of the presence of a newly formed star at the head of pillar. If the pillars are formed
via a combination of photo-ablation and winds from the massive star then one would
expect shock triggering to occur within any marginally stable clumps in the pillar
material once the shock reached the clump position. Thus the dynamics of star
formation within HII region pillars represents another of many reasons why TSF
needs to be explored in its full evolutionary detail.

In this paper, we use the parallel AMR code AstroBEAR2.0 (Cunningham et al
(2009), Carroll-Nellenback et al (2013)) to study the shock-induced triggering of a
stable Bonnor-Ebert cloud following, for the first time, the long-term evolution of the
system after a star, numerically represented by a sink particle, has been formed.

To explore the post-triggering physics of TSF, we present simulations in three
different regimes: I. triggering a non-rotating cloud; II. triggering a cloud with an
initial angular momentum parallel to the shock normal; III triggering a cloud with
an initial angular momentum perpendicular to the shock normal. These simulations
allow us to answer four questions: 1. What is the nature of the flow pattern after a
star has formed in TSF? 2. How do disks form in TSF environments? 3. what is the
subsequent disk evolution in the presence of the post-shock flow? 4. How do accretion
and mixing properties change with initial conditions in TSF? In particular we explore
the evolution and the disruption of the protostellar envelope by the post-shock flow.
For the rotating cases, we are interested in how the initial angular momentum can
lead to formation accretion disk surrounding the newly formed star. Finally, we study
the interaction of the disk and the post-shock flow and its affect on circumstellar disk
survival.

The structure of this first report of our ongoing campaign of simulations is as
follows. In Section 2 and 3 we describe the numerical method and model. In Section

4 we report our results. Section 5 provides analysis of the results and we conclude in
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Section 6.

6.2 Initial Simulation Setup

We begin with an initial marginally stable Bonnor-Ebert sphere as the triggering
target for our shock. The initial cloud setup is similar to Boss et al (2010), i.e a
cloud with M. = 1M, a radius of R. = 0.058pc, a central density of p. = 6.3 X
107 /cc and edge density of 3.6 x 1072°g/cc. The cloud has a uniform interior
temperature of 10/K. The ambient medium is initialized to satisfy pressure balance
at the cloud boundary when the cloud is stationary, with density p, = 3.6 x 10722g/cc
and temperature of 1000K.

We express time scales in terms of the “cloud crushing time” t.. which is defined
as the time for the transmitted shock to pass across the cloud, i.e. t. = \/%RC/ Vs
where V is the incident shock velocity and xy ~ 1700 is the ratio of peak cloud
density to ambient density. For our conditions t.. ~ 276 kyrs. We have performed
simulations to check the stability of the cloud and find that the cloud oscillates with
a time scale of about 10t¢... This is longer than the time span of our simulation. The
free-fall time t¢; can be used to gauge the time scale of gravitational collapse. Our
initial cloud has t;s ~ 84 kyrs. Note that although we find that triggering can form
a star as early as t.. <t < 2t.., our interest in the post-triggering interaction leads
us to simulate the fluid evolution through 4t.., which is approximately equivalent
to 1 million years. To make a comparison between slow and fast shock cases, we
initialize the incoming shock at two different Mach numbers: either M = 1.5 or
M = 3.16, where M is the ratio between the shock speed and ambient sound speed:
M = vg/c,s. Given the shock speed vs = 3km/s, we can estimate the incoming mass
flux as F, = 4mpavs ~ 1.4 x 10718g/cm?s.

We use K = ;s to characterize the importance of rotational energy in our
simulations where 2 is the angular velocity. We assume K = 0.1 for all the rotational
cases presented in this paper (Banerjee et al (2004)). Characterizing the influence of
different K > 0 values is an important separate topic that we leave for future work.

Here we simply focus on studying the difference between the rotating (K = 0.1)
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Table 6.1 Simulation Setups

Code | Shock Mach | Cloud Rotation (relative to shock normal) | K
N 1.5 None 0.0
N’ 3.16 None 0.0
R1 1.5 Parallel 0.1
R2 1.5 Perpendicular 0.1

and non-rotating cases (K = 0) and different orientations of the initial rotation
axis. Adding an initial solid-body rotation can change the initial equilibrium of
the cloud as the added centrifugal force breaks the equilibrium of a Bonnor-Ebert
sphere. However, we have performed simulations to verify that only for K > 0.4
can significant expansion be seen during the time duration of our simulations, i.e. 4
cloud crushing times. Furthermore, the added slow expansion from K = 0.1 does not
alter the mechanism of shock triggering as such effect does not lead to cloud collapse
on its own. Intuitively, rotation does not only lead to possible disk formation, but
also adds resistance to triggering from centrifugal force. The effect of rotation on
triggering is discussed in more detail in Section 5. The parameters of the initial setup
are summarized in table 6.1.

We continue to inject a ”post-shock wind” of the same form as that used in Boss et
al (2010) (and of the same density and temperature as the initial ambient gas) until
the end of the simulations (i.e. long after the initial shock has passed by the cloud).
We assess how strongly this wind ablates the bound cloud material, including that
material which forms a disk in the rotational cases. The density of this post-shock
wind is approximately 100 times lighter compared to the shock front, giving a mass
flux of F, &~ 1.4 x 107%g/cm?s.

Although continuation of this post-shock wind for the full duration of the sim-
ulation is unphysical because it implies a total mass loss of 198M ejected from a
source 1pc away, it will tell us that any disk which survives this extended wind will

also survive any shorter lived wind with the same mass flux .

We implement mesh refinement to focus on the region centered on the sink parti-

cle. The simulation box has a base resolution of 320 x 192 x 192, which is equivalent
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to 64 cells per cloud radius. We add 3 levels of refinement around the region of the
cloud (or sink particle) yielding an effective resolution of 64 x 23 = 512 cells per cloud
radius. We employ outflow boundary condition at all the boundaries of the simulation

box.

6.3 Simulation Results

In general, we can divide the triggering event into three phases: I. the incoming
shock impinges on the cloud compressing it into a dense core until the local Jeans’
stability criterion is violated. The subsequent infall generates a star (represented by
a sink particle in our simulations) marking the end of this phase. II. Ablated cloud
material that is not gravitationally bound is accelerated and ejected downstream.
The still gravitationally bound gas is also exposed to the post-shock wind. III. The
star and its bound material continue to evolve while interacting with the post-shock
wind until the end of the simulation.

Fig.1 demonstrates these stages. In the figure we show the column density (den-
sity integrated along the axis pointing out of the plane) evolution of case R1 (see
table 6.1) immediately after the star is formed, at about 1.1¢. (0.3 million years)
in the top panel; immediately after the star has entered the post-shock region (0.5
million years) in the middle panel; and after the star and its surrounding disk become
embedded completely in the post-shock wind in the bottom panel. In Fig.1(a), a star
(represented by a red sphere) embedded in the cloud is visible as the collapse pro-
ceeds. In Fig.1(b), the star, as well as the bound cloud material has been left behind
as the unbound remnant cloud material is driven downstream (to the right). The star
and the gas bound by its gravitational potential remain exposed in the post-shock
wind. At this point, the initial angular momentum of the cloud (oriented along the
shock normal) leads to the creation of a disk. In Fig.1(c), we capture the flow pattern
at time ~ (.85 million years. Here, although the disk has experienced a ram-pressure
driven ablation from the post-shock flow for more than 0.3 million years, its shape

and size remain relatively unchanged. As noted in Section 3, in reality the post-shock
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flow will last less than 1 million years, so our results conservatively indicate that disks
should survive the post-shock environment of a typical triggering event. This survival

is discussed in more detail in Section 5.4.

To compare the different cases listed in table 6.1, in figure 6.2 we plot the column
density of each case at a fixed time - 0.6 million years. This corresponds to just after
the star has entered the post-shock wind, and the disk, if it forms, is present. For case
N, the bound cloud material surrounding the newly formed star is quickly shredded
away by the post-shock flow, leaving the star isolated in the wind. Given the low
density of the resulting circumstellar material, its accretion rate is low and the bulk
of mixing be determined before the end of phase II.

For case N, the incoming shock is approximately twice as fast as that in case N.
We observe that star formation can still be triggered, confirming that Mach = 3.16
falls in the “triggering window” (less than Mach 20) described in Boss et al (2010).
The time scale for the triggering t;, defined as the time scale between the beginning

of the shock compression until the formation of the star, is half of that of case N.

For cases R1 and R2, the bound material forms a disk of radius ~ 1000AU at the
end of phase II. This disk radius is consistent with the estimation of disk formation
radius 74 &~ Q?*R}/2GM,, where M, is the mass of the central star (about 1My).
This expression for r4 is determined by the radius at which material in-falling while
conserving angular momentum reaches a Keplerian rotation speed. Note also that
the disk temperature deviates from the initial cloud temperature (10K) because =y
is set to 1.0001 instead of exactly 1. For Federrath type accretion algorithm, this
temperature increase can introduce heated numerical accretion zone (a zone of fixed
number of cells that are kept at just below the threshold density) around the star.
Once the star drifts into the post-shock wind, this heated zone can expand and disrupt
the circumstellar profile. This is the reason why we preferred to choose Krumholz
accretion algorithm which does not rely on creating such an accretion zone. We have
verified through simulations that when v — 1 is approaching zero, the triggered star

formation results obtained from Federrath and Krumholz type accretion algorithms
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Figure 6.1 Column Density Evolution for Case R1: (a) 0.3 million yrs; (b) 0.5 million
yrs; (¢) 0.85 million yrs
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Figure 6.2 Post-triggering evolution at 0.6 million years: (a) Case N; (b) Case N’; (c)
Case R1; (d) Case R2.

converge.

The disk formation is a natural consequence of the initial rotation, as in both cases
the planar shock does not significantly alter the angular momentum distribution of
the cloud as long as the shock remains stable. In the the N cases, little post-shock
circumstellar material remains compared to the R cases since the material can more
easily collapse to the core for the former cases. However, the total post-shock stellar
plus bound circumstellar material is lower for the R cases than the N cases since the
presence of angular momentum makes material less tightly bound initially.

We also expect less mixing in the N cases compared to the R cases given the same
shock Mach number because an extended disk acts to trap some of the incoming
material. But because R1 and R2 have different orientations of the disk relative to
the incoming wind, we expect the mixing of material into the disks in these two cases
to also be different. In case R1, the disk presents the maximum cross section for
ablation (7r2) while in case R2 , the wind hits the disk edge on, yielding a much

smaller cross section o< h the vertical scale height. Case R2 exhibits an ellipsoidal
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Figure 6.3 Case R1: 3D volume rendering of the disk formed by triggering at 0.6

million years.

disk geometry just after its formation due to the disk-wind interaction. In short,
comparing the R and N cases, we can qualitatively understand the differences in both
accretion rates and mixing ratios.

In figure 6.3, we plot a 3D volume rendering of case R1, at time 0.6 million years.
This corresponds to the time period after the disk has been completely engulfed in
the post-shock wind. The pseudo-color shows the density percentage as normalized
by the initial average cloud density - initial average cloud density is set as 100. Fig-
ure 6.3 shows that the compressed cloud material (red region in figure 6.3) mostly
ends up accreted onto the star (marked in figure 6.3 as the white sphere) or in the
accretion disk. The figure shows the spiral pattern that forms downstream as disk

material is ablated by the post-shock flow.

101



o
&

°
o

Stellar Mass (Solar Mass)
©

o
Y

Accretion Rate (LoglO, Solar Mass per Year)

0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Cloud Crushing Time) Time (Cloud Crushing Time)
(a) Stellar Mass (b) Accretion Rate
1.0e+000
50
3
-
= 1.0e-001
32
& ~
< @
g
o
3 = 1.0e-002.
%20 L roe
o
& ~
o o
] 2
5 2
X @ 1.0e-003
a
= o
5 =
I
n e
10
H 2 1.ce-00s
Q a
4
. Case N
] _=aee 7
Case R2
o's 10 115 200 205 30 20 .10 .20 S0 6.0 .50 .50 5.70
Time (Cloud Crushing Time) Time (Million Years)
(c) Number Density Mixing Ratio (d) Bound Material Mass Evolution

Figure 6.4 Time Evolution of Stellar Mass, Accretion Rate, Wind Material Mixing
Ratio and Bound Mass

6.4 Quantitative Discussion

In this section we briefly discuss the implications of our simulations, in terms
of the physics of triggering and subsequent star/disk evolution, given the cases we
have studied. We saved a more complete exploration of parameter space and its

astrophysical implications for future work.

6.4.1 Triggering time

In figure 6.4(a), we plot the evolution of the stellar mass (represented by sink
particle mass) formed by the triggering event for the four cases. Note first that in all

four simulations the star forms at around 0.8 to 1.2¢.., which corresponds to about 0.2
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to 0.3 million years for the Mach M = 1.5 cases, and about 0.12 million years for the
M = 3.16 case. Case N’ has an absolute formation time of about half of that of Case
N, due to its fast compression. For the transmitted shock, the density compression
ratio n is related to the transmitted shock Mach number M via n oc M2 This is
because the force exerted on the cloud is proportional to the ram pressure of the
incoming wind p,v?, where p,, is the wind density defined in Section 3 and v, is the
shock velocity: vy = Mc,. If we assume that the compressed cloud material behind
the transmitted shock undergoes free-fall collapse, we can estimate the collapse time
scale as tyy o< 1/,/n. This yields a scaling for the triggering time described in the
last section as t; oc 1/M. If the triggering time is inversely proportional to force on
the cloud, then as we increase the Mach number by a factor of 2 as occurs in the set
up of Case N vs. Case N’, we expect the triggering time to be approximately halved.
This is consistent with figure 6.4(a). The rotating cases R1 and R2 have slightly
later triggering times compared to the non-rotating cases, because of the additional
support against collapse provided by the added rotation. When K is small, the inward
acceleration is reduced by QR?, where R is the orbital radius of the considered gas

parcel. The in-fall time is then calculated from:
1
5(GM/R2 —O’R)tin = R (6.1)

from relations GM/R* = 2R/t7; and Q*R = RK?/t};, we obtain the in-fall time is
increased as t;, = v/1 + K?t;; when initial rotation is added. The delayed triggering

time can then be seen as the effect of the K? term.

6.4.2 Asymptotic Stellar Mass

Another significant feature shown in all four cases is the asymptotic stellar mass
found in the simulations. We find M, ~ 1M for the Mach 1.5 cases, and 0.6 M, for
the Mach 3.16 case. The lower asymptotic mass of case N’ can be explained by the
fact that once a sink particle is formed, its accretion rate is determined by the Bondi

accretion rate implemented through the Krumholz et al (2004) accretion algorithm.
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Thus, the stellar mass at the end of phase I, and consequently the asymptotic stellar
mass, is predominantly determined by how much time the particle has to accrete cloud
material before it enters the post-shock wind region. This time scale is determined by
how fast the incoming shock can accelerate the cloud material. Using the analysis of
Jones et al (1996) we have the “cloud displacement” time ¢4 = \/m, where R,
and a. are the cloud radius and acceleration, respectively. Since a,. is proportional to
the ram pressure from the shock exerted on the cloud, a. oc M?. This yields a time
scale t, o< v/R./M for the star and its bound material to become exposed to the post-
shock. Thus case N’ has about half the time to accrete cloud material as compared
to cases N, R1 and R2. Figure 6.4(a) agrees with the above analysis. For the Mach
1.5 cases, the final stellar mass approaches M, ~ 0.98M, for the non-rotating case,
and M, ~ 0.94M for the two rotating cases. This indicates that for all the cases
studied, most of the initial cloud material ends up in the star before the end of phase
II, which is consistent with the discussion in Section 4.

The reduced stellar mass for the rotating cases is reasonable as some of the ma-
terial ends up in a disk as opposed to directly accreting onto the star. At the end of
stage I (0.45 million years for the R cases), the gravitationally bound gas enters the
post-shock region, and the disk is visible in the simulations. This disk has an initial
mass of approximately 0.1 M, which is in agreement with the initial K and its radius
as discussed in the previous section. The disk mass gradually depletes because of the
accretion onto the star as shown in figure 6.4(d), and the stellar mass continues to
increase during stage II for the R cases. At the end of the simulation, the disk mass
drops to less than 1073M®. We will discuss the wind ablation and the asymptotic

disk mass in more detail in Section 5.4.

6.4.3 Accretion Rates

In figure 6.4(b), we present the stellar accretion rates in our models. The accretion
rate is calculated as the time derivative of the stellar mass. The most conspicuous

feature is the difference between the non-rotating and rotating cases. While case N
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reaches its final accretion rate at approximately 0.7 million years (set by Bondi-Hoyle
accretion in the post-shock flow), cases R1 and R2 continue to accrete mass at a
higher rate because the mass was unable to fall in earlier and is in the disks. The
higher accretion rate at these times for the R cases can be thought of as “delayed”
infall: in the R cases, some of the cloud material ends up in the disk instead of
being immediately accreted by the star due to the additional support provided by the
rotation. This material can still be accreted through the disk later in stage II (i.e.
accretion is delayed). The total mass that becomes the star would be is overall less
for the R cases.

The disk formation and subsequent accretion aids in mixing more material from
the shock (and post-shock) gas into the star compared to previous studies without
such disks as the disk provides greater cross section for interaction with the incoming
wind. The accretion efficiency of wind material during stage II is set by the cross
section of the total bound gas embedded in the wind (star+gas). This cross-section is
7r3 for the R cases. For the N cases it is determined by the Bondi radius: 7% where
rg = 2GM,/(c? +v2). Given the parameters M, ~ M, T = 10K and v, = 3km/s,
we find that 72 > r%.

We define the mixing ratio as the ratio of K = n,/(n. + n,), where n,, and n,
are the number densities of the post-shock gas and cloud gas that end up accreted
onto the star, respectively. In figure 6.4(c), we see that the parallel rotation case has
the highest mixing ratio amongst the three Mach 1.5 cases. As discussed earlier, this
is likely due to its large cross section of interaction with the post-shock flow. Case
R2 has a lower mixing ratio compared to N at the end of the simulation but the
R2 rate is still growing while the N rate has reached its maximum value. Note that
the M = 3 case shows much more mixing than the lower Mach number simulations.
This is likely the result of increased shock speed on the internal flow within the cloud
and is consistent with Boss et al (2008), where the effect of shock Mach number on

mixing ratio was more thoroughly explored.
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6.4.4 Circumstellar Bound Mass and Disk Survival

Finally in figure 6.4(d), we present the mass evolution of the cicumstellar gravi-
tationally bound gas where we label any gas parcel with total energy £ = Eir+ Ey, +
Ejas—gas + Egas—particie < 0 as bound (Ej, is the kinetic energy, Ey, is the thermal en-
ergy, Fgos—gas and Egqs—particie are the gravitational binding energy from self gravity
and the star’s point gravity.) The initial kink in the three curves at around 0.3 million
years coincides with the onset of triggering. From 0.3 to 0.5 million years, the shapes
of the curves remain similar. This is in phase I where the star has not yet emerged
from the cloud, and most of the mass loss results from the accretion onto the star.

Since case N does not form a disk, the circumstellar bound material is quickly
shredded away by the incoming wind once exposed to the post-shock flow. At 0.8
million years, its bound mass drops to about 100 times less than that of the two
rotating cases. There is no resolvable material left surrounding the formed star. For
cases R1 and R2, the bound mass drops at a much slower rate because of the disk.
From figure 6.4(d), we observe that if the wind is turned off prior to 0.7 million years,
the surviving disk will have a mass greater than 1073M, giving the mass of the
whole system 1.001M, close to the Solar System. Therefore we conclude that it is
possible to obtain at least a 1.0014 M, star plus protoplanetary disk system from such
a triggering mechanism given our physically reasonable choice of initial conditions.

To connect our disk survivability results with previous work, we follow Chevalier
(2000) and estimate the erosion radius r.(t) of the disk from pg(t)\/2GM,/1(t) =
Puwlw, Where p,, and v,, are the density and velocity of the post-shock wind and py(t)
is the density of the disk. Material at radii r > 7.(¢) cannot survive in the disk as-
suming that the wind momentum is fully transferred to the disk. Any disk surviving
at a given time must have ry(t) < 7.(t). For our simulations we have pg &~ 107'%g/cc,
pw = 3.6 x 107%2g/cc, M, =~ My, and v,, = 3km/s at the end of our simulations thus
we can verify that ry < r.. Although this is a necessary property that a surviving
disc must have at the end of the simulation, the condition evaluated at the initial
time of disk formation is not sufficient to assess its long term survivability because

it does not account for the accumulated influence of the wind. Even a low density
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wind impinging over long enough times could in principle ablate the disk. However
our disk survival is also in agreement with the study by Ouellette et al (2007), who
found that pre-existing disks can survive ablation from the full exposure to super-
nova driven shock. Such survival can only result if the drag of the disk on the wind is
inefficient. Indeed Ouellette et al (2007) find that a high pressure region and reverse
shock formers upstream of the disk surface and deflects the flow around the disk leav-

ing it intact. The result is that the wind-disk interaction is ineffective at disk ablation.

6.5 Concluding Remarks

Using AMR numerical simulations, we have followed the interaction between
shocks of different Mach numbers and self-gravitating clouds, with and without initial
rotation. In each case we followed the evolution of the interaction to study collapse
of the cloud, formation of a star, and post-shock evolution as the wind continues
to interact with the collapsed cloud. Our studies have carried out the shock-cloud
interaction to longer times than have been previously studied. Our focus has been on
the extent to which the variation in Mach number and the presence of rotation (at
10% the escape speed) affects star formation, the post-collapse circumstellar bound
mass, and the mixing of blast wave material with the cloud. In all three cases that
we studied, the interaction proceeds in three phases. First the shock compresses the
cloud enough to form a star at the core. Then some cloud material gets ablated
and unbound from the star. Finally, some material remains bound to the star and
continues to evolve as it is exposed to the post-shock flow. The star formation from
the shock induced collapse is robust in all cases whether rotating or not. The mass
of the star formed in the initial collapse phase is also comparable in the rotating
and non-rotating cases but slightly larger in the non-rotating case since the rotation
makes the total mass less bound than for the non-rotating case. However the shock
Mach number affects the asymptotic stellar mass even more than the rotation: the
higher the Mach number, the less the stellar mass at the end of the simulation.

For the case of rotating clouds, bound circumstellar disks form around the newly
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formed stars. Even though the disks are exposed to a continuous stellar wind for
throughout the long duration of our simulations, the disk survives this long duration
of wind erosion. Because the net momentum from the wind impinging on the disk is
substantial, the survival of the disk implies that the drag on the wind by the disk is
small, leading to inefficient conversion of the full wind momentum to disk ablation
flow. Overall, the asymptotic disk mass of around 1073M, given our 1 M, initial
cloud, is achieved when the wind duration at 0.7 million years.

For the question of mixing, we find that the dominant influence on the mixing ratio
of blast wave to bound cloud material is the Mach number of the initial shock. The
higher the Mach number, the higher the mixing ratio. The mixing ratio is relatively
insensitive to the rotation. We note however that rotation can lead to disk formation
which subsequently increases the cross section of the bound mass around the star and
that can favor extra trapping of incoming wind material (when comparisons are made
at a given Mach number with and without rotation).

Based on previous studies of Boss and collaborators that explored the relation
between SLRI mixing and incident shock mach numbers, the simulations we present
here (with M = 1.5 or 3) are not high enough to yield sufficient injection of material
to account for observed SLRI abundences. Given the earlier work we would need
Mach numbers in the range of 10 to 20 and we leave a fuller exploration of parameter
space to a future work. The simulation results presented here however do provide a
general understanding to the long term evolutionary mechanisms of TSF including

the effects rotation.
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Chapter 7

Resistive Shock-clump interaction
and its Lab Astrophysics

Implication

7.1 Introduction

In the National Laser User Facility (NLUF) project, we conduct experiments to
run shocks over target (SiO2) embedded in room temperature ambient (Argon), and
study the X-ray projection image of the resulting flow pattern. The goal of the
project is to resolve on the experimental basis the shocked-behavior of clumps that
can be commonly found in supernova remnants, stellar jets and YSOs. As discussed
in chapter 5, it is often the case that the clumps in such objects contain non-negligible
magnetic field. Following Jones et al 1996, we have studied the more realistic situation
in chapter 5 where the magnetic field is contained inside the clumps and possess
complicated geometry. As a first cut for the lab effort, we design experiments with
uniform magnetic field. These experiments provide direct verification for numerical
results of shock-clump interaction dated back to the 1980s, and can be used to contrast
observed behaviors of such regions such as HH1.

The general model for the shock-clump interaction as predicted in many previous

papers such as the time scale for Rayleigh-Taylor instability and Kelvin-Helmholz
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instability (Jones et al 1996), the compression ratio for magnetized clumps (Li et al
2013), are expected to be measurable and compared with. One of the major differ-
ences between realistic and laboratory astrophysical is the fact that in the reaslitic
astrophysical environment, the magnetic Reynolds number R,, = V L/n is usually
large due to the enormous length scale of the astrophysical objects. In the lab enviro-
ment, however, the flow speed V' can be produced to mimic the realistic heterogeneous
flow by adjusting the radiation pressure from the Omega laser. The magnetic diffu-
sivity is usually smaller in the lab environment depending on the ambient and target
density, as n o< n.T~3/2, the temperature is usually comparable, but the electron
number density is 40 times greater in an experiment using Argon ambient compared
to realistic ionized hydrogen. The most important difference comes from the flow
length scale L which takes on the order of parsecs for the realistic astrophysical ob-
jects, but only on the scale of mm for the lab experiments. Therefore, R, for the
experiment is likely 10'® times smaller than that of the realistic value. While the
latter may be very large so that it can be entirely ignored, R,, may not be big enough
to be ignored in the lab astrophysics. One of the question for the experiment design,
is then to ask at what R,, value does the shock-clump interaction resembles the case
of ideal MHD (R,,, = 00)? The instrumentation needs to designed so that such R,,
value can be achived. In this chapter, we introduce the numerical simulations that
for the first time captures the behavior of magnetized shock-clump interaction with
a non-negligible magnetic Reynolds number. In section 7.2, we present the numer-
ical setup. In section 77, we discuss the results from simulations where R,, is held
constant. In section 7?7, we present the simulation results where R,, is taking Spitzer

value from the relation 7 oc n,1~%/2.

7.2 Initial Setup

In the experiment, we choose Argon ambient and SiO2 target both at room tem-
perature. In the numerical simulations, we change the temperature of SiO2 so that the
pressure equilibrium holds between the ambient and the target. We present two sets

of simulations. The simulation box is three-dimensional, with an effective resolution
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of 64 zones across one clump radius.

(1) Constant magnetic Reynolds number with no radiation heating. This setting
allows us to test the effect of magnetic diffusion on the shocked behavior under differ-
ent magnetic Reynolds number. Recall that magnetic Reynolds number R, = V' L/n
where V' and L are the velocity and length scales of the flow, n is the magnetic dif-
fusivity. Taking V' and L to be the shock velocity and the diameter of the target, we
apply constant 7 in our simulation so that we can manually vary the R,, by changing
the numerical 7. We investigate the cases ranging from R,, = oo to R,, = 100. It
is worth mentioning that although the parameter regime of R,, 1 is of great interest
as the magnetic diffusion time scale becomes comparable to the hydrodynamic time
scale, the AstroBEAR code implements explicit resistivity solver which relies on op-
erator splitting - we repeatedly solve the induction equation at each hydrodynamic
time step, only taking time step ¢t o< R,,. Therefore dropping R,, to 1 would result
in an unpractically small time step. Such difficulty can be overcome by implement-
ing implicit resistive solver, which causes a side effect - we now need to enforce the
divergence free condition for the magnetic field after each resistivity time step. The
resistive MHD solver in AstroBEAR is discussed in detail in section 2.4. We present
the results from these simulations in section ?77.

(2) Realistic resisvity that depends on the Spitzer value. The Spitzer resistivity
is discussed in section ?7. In the experiment, the laser beam irradiates the horum to
produce a blast wave travelling through the cavity and shocks the target. Such laser
also creates abaltion of the horum thus produces intense ablation and heating that
can change the temperature of the cavity. This radiative heating is non-negligible as
it can significantly increase the conductivity of the ambient plasma, thus lowering the
plasma resistivity. In order to accurately simulate the temperature profile at the time
when shock hits the target, our group has run radiative hydrodynamic simulation to
predict the radiation heating (Peter Graham et al). We then import the data from the
radiative hydrodynamic simulation to AstroBEAR and create a temperature profile
shown in figure 7.1(b). The temperature is about 0.026 ev in the ambient (room
temperature), 0.0012 ev in the target initially, 0.026 0.8 ev in the ambient, 0.0012
0.3 ev in the target after preheated by radiation). The Spitzer resistivity has a
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floor temperature: any temperature below 0.26 ev (3000 K), is treated as 0.26 ev
when calculating resistivity. This choice is purely out of numerical concern: if the
temperature drops too low, the resistive time step can become too small to track:
from section 2.4, we know that At oc T-3/2. This implies that the magnetic diffusion
inside the target is always treated as if the target is heated by the radiation. Such
approximation may not be valid in the real experiment as it is important to measure
the magnetic diffusion before the preheating.

The magnetic field is on the direction vertical to the shock normal. In the exper-
iment, the magnetic # can be suppressed to around 10 by careful instrumentation.
In the numerical simulations below, we assume [ = 4 universally. We present the

simulation results in section ?77?.

7.3 Results for Constant Magnetic Reynolds Num-
ber

For the case of constant magnetic reynolds number, the magnetic diffusivity is
computed from R,,. We study the three cases where R,, = 100, R,, = 1000 and
R,,, = oo for both horizontal (magnetic field parallel to the shock normal) and vertical
(magnetic field perpendicular to the shock normal) field orientations. Figure 7.2 shows
the horizontal field case with two-dimensional cut through the center of the simulation
box, at 3 clump crushing time (defined in the same fashion as equation 5.3).

For horizontal magnetic field case, Jones et al 1996 predicts a streamlining effect
along the clump surface due to the magnetic field tension surpressing the Kelvin-
Helmholz instability. Another significant difference for the magnetized case is the
“magnetic rope” at the back of the clump facing downstream where field strength
is amplified because of the converging flow downstream. This magnetic rope creates
a thread-shaped density cavity, which is visible in the R,, = oo ideal MHD case in
figure 7.2 as the dark blue thread-shaped feature in the density map. The horizontal
magnetic field cannot surpress the Rayleigh-Taylor instability thus the head of the

clump facing upstream is still susceptible to shock erosion even when the field is
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Figure 7.1 Initial setup for shock-clump interaction with Spitzer resistivity. (a) density

distribution, (b) temperature distribution with radiation preheating.
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Figure 7.2 Shocked behavior of the target with horizontal magnetic field at different
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Figure 7.3 Shocked behavior of the target with vertical magnetic field at different

magnetic Reynolds number R,, as marked.
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strong. In figure 7.2, we observe that erosion happens at the head of the clump facing
upstream in all cases.

One of the important features in figure 7.2 is that the profile of the clump rem-
nant of the R,, = 100 simulation at 3t.. is similar to that of Jones et al 1994, the
hydrodynamic cases. This indicates that for parameter regime R,, < 50, it is impos-
sible to distinguish the magnetized case with the non-magnetized case: the magnetic
diffusion is strong enough so that the streamlining effect is diminished to be almost
not noticeable. It is therefore important to surpress the magnetic diffusion to achieve
R,, > 100 during instrumentation.

We next observe that the profile of the clump remnant of the R,,, = 1000 simulation
is similar to that of the R,, = oo case, i.e. the ideal MHD case. This indicates that
for the parameter regime R,, > 1000, we can treat the experiment as ideal MHD.
This observation implies that for maximum magnetic field effects, we need to surpress
the magnetic diffusion to achieve R,, > 1000 for the horizontal field experiment.

Figure 7.3 shows the density cut-through of the vertical magnetic field simula-
tion at 3t.. under different magnetic Reynolds number. For the vertical magnetic
field case, Jones et al 1996 predicts strong amplification of magnetic energy due to
stretching along the clump profile. This amplification creates a “shock absorber”
encompassing the clump, preventing it from shock erosion. The clump remnant in
this case is much more confined vertically compared to the non-magnetized and the
horizontal field cases. With vertical magnetic field, both the Kelvin-Helmholz in-
stability and the Rayleigh-Taylor instability are surpressed, as the field compression
and stretching at the head of the clump facing upstream creates significant magnetic
energy amplification, while at the edges of the clump, the field amplification is mainly
due to stretching.

Comparing the top panel with that of Jones et al 1994, we find that similar to
the horizontal field case, for R,, < 100, it is difficult to distinguish non-magnetized
with magnetized environment by comparing the downstream flow: the clump remnant
expands vertically, and creates tails at the edge of the clump, producing KH instability
patterns. Note that however, the core of the clump remnant remains relatively intact

compared to the non-magnetized case for R,, = 100. This indicates that the head of
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the clump facing upstream is protected against RT instability for R,, = 100. Indeed,
although the stretching effect is decreased under resistivity, the field compression at
the head of the clump is still significant enough to create a “buffer” to reduce shock
erosion. The condition for this to happen is that the shock needs to be fast enough so
that the field it brings to the buffer zone outweighs the field leaving the buffer zone
due to diffusion. We conclude that for R,, = 100 with vertical magnetic field, it is
possible to observe the difference between non-magnetized and magnetized cases, by
observing the spread of the core of the clump remnant.

In the middle and bottom panel of figure 7.3, we observe that when R,, > 1000, the
resistive MHD result resembles the ideal MHD result. The stretching at the edge of the
clump is strong enough such that the KH tail produced in the top panel of figure 7.3
is surpressed. This result is consistent with the horizontal field case: to observe

differences in the downstream flow pattern, it is required to achieve R,, > 1000.

7.4 Results for Realistic Resistivity

In the previous section, we have investigated the effect of constant R,,, and es-
tablished two key results: (1) In both cases of magnetic field orientation, the pa-
rameter regime for the resistive MHD shock-clump interaction to resemble that of
non-magnetized case at downstream is R,,, < 100; to obtain downstream flow pattern
comparable to ideal MHD, we require R,, > 1000. (2) In the vertical magnetic field
case, it is possible to distinguish the resistive MHD case from the pure hydrodynam-
ical case even when R, = 100, by looking at the core of the clump remnant: the
MHD case exhibits significantly less spread.

In the experiment, however, R,, is not a constant, but depends on flow density
and temperature via expression of conductivity: o = FinAn.T%/?, where F is the
shielding factor that is usually around unity, InA is the Coulomb Logarithm, that can
be fitted as a function of density and temperature. The magnetic diffusivity that we
feed into the Ampere’s law is therefore 7 = 47¢/o. As the magnetic diffusivity varies
according to T3/2, it is crucial to resolve the correct temperature profile throughout

the simulation. Using the radiation preheating temperature profile introduced in sec-
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tion 7.2, we conduct resistive MHD simulations with Spitzer resistivity with varying
magnetic 5. The results are shown in figure 7.4.

We first observe that the top panel resembles the middle panel: with Spitzer
resistivity, f = 10 magnetic field does not significantly change the flow pattern. This
result is important as it gives us direct guidance as for how strong the uniform field
needs to be so that the MHD effect can be observable: magnetic field weaker than
B = 10 cannot be observed by examining the density map.

Next, we find that the 5 = 1 case shows differences at the head of the clump facing
upstream. Most noticeably, there are significantly less RT rolls, resulting in a much
smoother profile compared to the top and middle panel. Each of the RT rolls has a
length scale of around 0.1mm. We therefore conclude that under Spitzer resistivity,
in order to distinguish the § = 1 with the non-magnetized case, we need to be able
to resolve flow features < 0.1mm at the head of the clump. This conclusion provides

clear direction for the instrumentation.

7.5 Concluding Remarks

Through the resistive MHD simulations, we demonstrated that AstroBEAR can be
used to assist the instrumentation design of laboratory astrophysics. The pioneering
NLUF project that is set to probe the shock-clump interaction problem in the lab
setting has challenges that have never been considered before. In this chapter, we
discovered that although it is usually reasonable to assume ideal MHD for realistic
astrophysics objects, in the lab environment, resistivity cannot be ignored in general
due to small length scales.

From the two sets of simulations - one with fixed magnetic § and varying magnetic
Reynolds number R,,, the other with Spitzer resistivity and varying magnetic 5. We
derived three useful conclusions that can be used to guide the experiment design.

(1) For constant R,,, the parameter regime that the magnetized from the non-
magnetized downstream flow pattern become identical is R, < 100. The parameter
regime where resistive MHD resembles ideal MHD is R,,, > 1000.

(2) It is possible to distinguish the magnetized case from the non-magnetized if
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Figure 7.4 Shocked behavior of the target with vertical magnetic field and Spitzer
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the magnetic field is vertical even for low R,, (R, < 100). We need to observe the
core of the clump remnant and measure the vertical spread: the magnetized case has
considerably less spread even under strong magnetic diffusion.

(3) With Spitzer resistivity, the radiation preheating from the horrum is crucial
in raising the temperature inside the container and therefore lowering the resistivity.
For strong magnetic field case (8 = 1), it is possible to observe the effect of the
magnetic field on the shocked dynamics by probing the instability pattern at the
head of the clump: the magnetized case has considerably less RT features compared
to the non-magnetized. The spatial resolution for such detection is required to be
under 0.1mm.

Reader may wonder whether there is other ways to detect the dynamic effect of
magnetic field on plasma in a lab environment. Figure 7.5 shows the alternative
setting in the NLUF project where we probe the shock-wire interaction. A strong
current (about 20A at the wire surface) runs through the wire and produces a toroidal
magnetic field. Compared to the non-magnetized case, we observe magnetic “buffer”
between the bow shock and the wire surface. The thickness of this buffer zone is
directly measurable in the experiment, and can be theoretically calculated through
pressure equilibrium condition at the stagnation point. Such design also provides
excellent example of theory verification, and is summarized in another NLUF project

related paper Andy et al 2014.
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Figure 7.5 Shocked behavior of wire (top down). The wire has 20A surface current
running out of the plane. This produces a toroidal magnetic field around 207" at
the wire surface. Top: non-magnetized; bottom: magnetized. The magneto-pause is

caused by the shifting of the stagnation point by magnetic pressure.
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Chapter 8
Summary

In this thesis, we have introduced AstroBEAR, the parallel Eulerian MHD code
with multiphysics capabilities, the numerical schemes of some of its most important
multiphysics solvers as well as tests, and four interstellar heterogeneous flow prob-
lems through AstroBEAR simulations. In this chapter, we summarize what we have

learned through these results, and point out future research interests.

8.1 Numerics

AstroBEAR is a grid-based Eulerian code that solves ideal MHD equations. It
implements multiple exact and approximate Riemann solvers, as well as a variety
of reconstruction schemes. It uses the emf and constrained transport scheme to
treat the divergence free magnetic field. AstroBEAR implements load balancing
scheme as well as multithreading in order to achieve ideal performance on modern
computing architectures. Recent performance tests of AstroBEAR 2.0 has shown
excellent scaling result up to tens of thousands of processors based on both weak and
strong scaling idioms.

AstroBEAR uses operator splitting to treat its multiphysics components. Under
operator splitting, when we take a time step At, we first solve the ideal MHD equa-
tions for At, then we take the physics quantities output from ideal MHD and feed

them into the multiphysics solver to evolve another step of At. The net effect is that
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both MHD and multiphysics evolves for At, thus approximating the case in which
both solvers are interwined. It should be pointed out that it is possible to mod-
ify the MHD solver such that multiphysics components are built in from the start
(Sharma et al 2012). Such solver is usually called an unsplit solver. Intuitively, oper-
ator splitting is a simpler though more artificial approach. Certain solvers may raise
numerical issues when treated in the splitted fashion, such as the magnetic field: the
MHD solver guarantees the divergence free condition by using contrained transport,
however, the splitted multiphysics solver is likely a linear system solver thus does not
provide such guarantee. When treating multiphysics processes involving magnetic
field, one need to explicitly make sure the multiphysics component is on its own di-
vergence free, which usually requires additional numerical mechanisms. On contrary,
an unsplit solver always provides multiphysics with divergence free magnetic field as
constrained transport can act on both MHD and multiphysics directly. Such unsplit
solver may be of interest in the future from both theoretical and application point of
view.

The first component we introduced is the implicit heat conduction solver. Through

operator-splitting, we solve the following equation:
OE/0t =V - (—=ry(VT)y), (8.1)

where E can be converted to a linear function of T assuming ideal gas. Thus we
have to solve a linear system if x is constant throughout the grid. The linear system
is solved by linear solver package HYPRE. When « takes the Spitzer value, i.e., a
function of T" as x oc T°/2, we linearize equation 8.1 and use Crank-Nicholssen scheme.
We have introduced the magneto-thermal instability in section 3.1 and verified that
the MTI growth rate matches the theoretical value.

The self gravity component is solved in a similar fashion. We solve the poisson
equation:

V3¢ = 4nGp (8.2)

using HYPRE. ¢ is then fed into the next MHD time step to calculate the external
force due to gravity as p¢. In section 3.2, we used the test from Truelove et al 1994

to verify the collapse rate due to the gas self gravity is correct.
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The resistivity component is arguably the most complicated as we are trying
to obtain a diffusion of magnetic field which in itself does not preserve divergence
numerically. The strategy we adopted is to compute the diffusion current from the

existing magnetic field using Ampre’s law:
J=nV xB (8.3)

We then solve the diffused field using:

0B

When explicitly solving equation 8.4, we do not have to worry about divergence free
condition as the curl of any vector field is inherently divergence free. In section 3.3,
we used the Sweet-Parker box model to test the explicit resistivity solver, and found
that the velocity of the outflow generated from a resistivity hot spot matches the
theoretical value.

Notice that the operator-splitting method introduced here does not explore the
numerical difference when applying different operators at different times, as most
of the physics we discuss throughout the thesis have been focusing on one type of
multiphysics at a time. However, such ordering may be crucial when combining sev-
eral multiphysics processes into one run. For instance, when combining magnetized
thermal conduction with resistivity, there is a difference if one applies the thermal
conduction operator or the resistivity operator first during each time step: diffus-
ing the magnetic field first leads to a different field geometry and therefore different
temperature distribution for the next hydrodynamic timestep. Intuitively, one may
randomize the order of operator application for each time step thus even out the dif-
ference during a simulation which likely requires thousands of time steps to complete.
The numerical effect of such randomization is not fully explored in the literature, and
may lead to new discovery in the numerical front. Such treatment can also benefit the
future scientific projects directly as it may be able to render more realistic solutions

when multiphysics processes are combined.
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8.2 Magnetic Field Regulated Heat Conduction Through

Hot-cold Interfaces

In chapter 4, we have investigated the problem of heat transfer in regions of ini-
tially arbitrarily tangled magnetic fields in laminar high § MHD flows using simula-
tion results of AstroBEAR code with anisotropic heat conduction. Three conclusions
stand out:

(1) Hot and cold regions initially separated by a tangled field region with locally
confined field loops may still evolve to incur heat transfer. The local redistribution
of fluid elements bend the field lines and lead to magnetic reconnection that can
eventually connect the hot and cold regions on the two sides. (2) The temperature
gradient through such a penetrated tangeld field region tends to reach a steady state
that depends on the energy difference between the hot and cold reservoirs on the two
ends. (3) equation 4.9, a measure of the initial field tangle, is a good predictor of the
ultimate heat transfer efficiencies across the interface for a wide range of R.

A basic limitation of our simulations is that they are 2-D. A 3-D version of this
study would be of interest as the field would then have finite scales in the third
dimension possibly allowing channels for heat transfer excluded in 2-D. We have also
not considered the effects of cooling in our simulations. The absence of cross field
diffusion is also not realistic in our parameter regime. Future simulations should
include both the diffusion parallel and perpendicular to the field.

Future directions of analysis could also include a multi-mode study, which inves-
tigates the effect of the spatial spectrum of the magnetic field distribution on the
heat transfer efficiency. When there are multiple modes or a spectrum is continuous,
it would be useful to predict how the efficiency would depend on the spectrum. In
this context, a more detailed comparison of heat transfer in initially laminar versus

initially turbulent systems would be of interest.
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8.3 Shock-clump interaction with contained mag-

netic field

We have studied the evolution of clumps with initially self-contained magnetic
fields subject to interaction with a strong shock using both numerical simulations
and analytic theory. Our results show a new variety of features compared to previous
work on shock-clump interactions with magnetic fields, which considered only cases
in which the field threading the clumps was anchored externally [Jones et al (1996),
Gregori et al (2000)].

We find that the evolution of the total magnetic energy and kinetic energy of
clumps depends primarily on the relative strength of the self-contained magnetic
field, the incoming supersonic bulk kinetic energy (characterized by the p parameter)
and the geometry of the magnetic field (characterized by the n and o parameters). We
identified two phases in the clump evolution that we characterized by ”compression”
and ”expansion” phases.

In general, we found strong distinctions in clump evolution depending on the rel-
ative fraction of field in the clump aligned perpendicular to or parallel to the shock
normal. This was demonstrated by considering distinct field configurations that we
called ”toroidal” and ”poloidal” and for each case comparing the shock clump interac-
tions when the symmetry axes were aligned with the shock normal and perpendicular
to it. The evolution of the clump magnetic fields seen in our simulations can be
described by the mathematical model culminating in equation 5.31 during its com-
pression phase.

The kinetic energy transfer from the supersonic flow to the clumps is similar in
the compression phase for all of our cases considered but develop differences in the
expansion phase depending on the initial field geometry and orientation, which in
turn determines how much field amplification occurs in the compression phase. The
evolution of the clump in the expansion phase depends on whether the shock or the
magnetic field is dominant at the end of the compression phase.

For the wind-clump material mixing, we found that the more the initial field
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is aligned perpendicular to the shock normal, the better the clump can deflect the
flow around the clump and the less effective the mixing. Equivalently, the better
aligned the field is with the shock normal, the more effective the clump material gets
penetrated by the incoming supersonic flow, gains kinetic energy in expansion, and
enhances mixing.

These simulations may provide morphological links to astrophysical clumpy envi-
ronments. In our presented study, we use 150a.u. clumps that are typical for young
star objects (YSO). However, we also put emphasis on “weakly cooling” condition
that the cooling length as indicated by equation 5.7 is not too small compared to the
clump radius. For clumps with much higher clump density, the ratio of clump radius
to cooling length y, can be greatly increased. x, can also increase when one tries to
scale the simulations to globules that are much larger in size. Therefore in order to
gain full understanding of the studied subject, numerical studies that are placed in
the parameter regime of “strongly cooling”, where y, is several orders of magnitude
greater than its current value, are necessary in the future. Future study may also
include more realistic radiative cooling using more recently studied emission lines
[Wolfire et al (1994)] and equilibrium heating [van Loo et al (2010)], more realistic
internal field geometry, for instance, random field; more realistic multi-physical pro-
cesses such as thermal conduction, resistivity; and more sophisticated mathematical

model.

8.4 'Triggered Star Formation

Triggered star formation, where an otherwise stable clump collapses because of the
compression of an incoming shock, can be used to explain the simulataneous collapse
and injection of exotic elements during star formation. Observational evidences for
triggered star formation includes Eta Carinae and Cygnus Loop where star forming
sites are found tracing a bow shock structure. Because of the higher-than-expected
SLRI abundance in the Solar System (1072 according to Imamura et al 2010), one may
suspect that shock triggering is the mechanism from which the Solar System is formed,

as it is one of the most efficient way to mix the material processed from a supernova
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blast wave into the system. One of the key implication is that through numerical
modeling, the condition of the triggering shock can be worked out through observable
parameters such as dilution ratio and mass. Boss et al 2010 and subsequently Boss
et al 2012 conducted numerical simulations to estimate the shock speed needed to
trigger a M, clump with desired dilution ratio (manifested as the injection efficiency).
However, they did not carry out the simulations till the time when a star and an
accretion disc is formed due to limitations of numerics.

In chapter 6, we introduced the AstroBEAR simulations with sink particle that for
the first time track the entire evolution pattern of shock triggered star formation, and
studied the formation and survivability of accretion disc through initial clump rota-
tion. Our model uses a clump that is similar to that of Boss’ as a natural progression
from their work. We summarise the results below:

(1) By inspecting the sink particle mass, we can directly measure the star mass
from the triggered formation. It is concluded that the star reaches an asymptotic
mass as the clump material is stripped away by the post-shock wind. The faster the
incoming shock, the lower the asymptotic mass and the higher the mixing ratio of
the wind material onto the star. The latter observation is in agreement with that of
Boss et al 2010.

(2) Bound cirumstellar disks form around the newly formed stars, giving initial
clump rotation. The disk survivability is similar to that of Ouelette et al 2007:
because of the formation of a bow shock around the disk when embedded in the
wind, the wind material gets deflected into the downstream and thus does not directly
impact the bound mass of the disk: the disk can survive the wind erosion for the entire
span of our simulations which is an overestimation compared to realistic supernova
blast wave.

One of the drawback of our presented simulations is that the blast wave structure
and the shock speed is not realistic. According to Chavalier et al 1986, the blast
wave has an inherent structure due to the radiative cooling. It is crucial for the
triggered star formation simulations to have correct blast wave structure towards
more realistic simulations. By now, no literature has put emphasis on this issue, even

in Boss et al 2012 where the effect of shock thickness is explored, the blast wave is still
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significantly different than the numerical models of supernova blast. As a next step in
the triggered star formation simulation, we adopt the numerical model of supernova
blast waves and use it for the next round of investigation. Figure 8.1 plots the blast
wave structure adopted from Chavelier et al 1986. The readers can easily observe
that the density, temperature and velocity profiles are all significantly different than
either the one introduced in chapter 6 or in Boss et al 2010.

Magnetized triggering is briefly presented in chapter 6. The effect of internal
magnetic field is demonstrated to be important to the post-formation morphology,
and is a key element for the formation of jets. Further numerical simulations in the
future will likely explore the various geometric configurations of magnetic field. This
direction of study ties back to the study done in chapter 5, and may link some of the
findings in shock interaction with magnetized clumps with star formation.

As evidenced by Eta Carinae, triggering can happen on a global scale. It is of
great interest on the numerical front to simulate multiple triggering by one single
bow shock. Such simulation requires a much greater dynamic range compared to the
simulations shown in chapter 6, and requires zoom-in ability so that one can disect
the output from the global simulation and focus on one of the triggering sites. Thanks
to the recent advancement in numerics such as AMR and sink particle, we believe

such problems can be practically tackled in the near future.

8.5 Resistive Shock-clump interaction

Laboratory astrophysics has seen significant rise of interest over the past 20 years.
With better laser and instrumentation technology, people can now build systems that
are scalable to astrophysical objects. In chapter 7, we introduced one of such system
that is designed to explore the shock-clump interaction problem. The goal of the
project is to understand the dynamic effect of magnetic field in such interaction in
the lab environment, and thus provide verification to the existing theory and numerics.

In chapter 7, we explored the non-ideal MHD shock-clump interaction because
in the experiment, the resistivity cannot be ignored. Such concern raises an issue

about scalable lab astrophysics in general: the scalability of the lab astrophysics re-
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sults is parameter dependent: some microphysics processes may manifest itself in a
completely different way in the lab environment compared to the astrophysics en-
vironment. Therefore it is possible to have lab results deviating from the desired
model even if all of the dynamic quantities are perfectly scaled. The resistive MHD
shock-clump simulations are set to solve two problems regarding the lab design: (1)
in what parameter regime can we distinguish the magnetic field effect? (2) in such
parameter regime, what flow feature should we observe?

We answered the first question by carrying out a set of simulations with fixed £,
but varying R,,. The comparison between different R,, cases gave us clear guidance
over the problem of magnetic diffusion: if R,, < 100, it is impossible to distinguish
the downstream flow pattern of non-magnetized cases with that of the magnetized
case; if R,, > 1000, resistive MHD resembles ideal MHD. We also discovered that
for vertical field, it is possible to distinguish R,,, = 100 magnetized case by observing
the spread of the head of the clump. These results provide useful clue to solve the
instrumentation, but the parameter regime of different R,, values needs to be more
thoroughly explored. One of the future project is to build mathematical models as in
chapter 5 to derive dimensionless parameters that can characterize the resistive MHD
shock-clump interaction. Such models, once verified by the numerical simulations, can
provide fast guide towards correct instrumentation design.

The Spitzer resistivity can be used to approximate the realistic situation in the
experiment. In chapter 7, we introduced a set of simulations with realistic Spitzer
resistivit under varying . We found that under strong magnetic field, it is only
possible to distinguish the magnetized case by observing the fine features of flow at
upstream. It is worth noting that such simulations do not take into consideration
of the dynamic effect of radiation, which may play an important role in the flow
evolution. As the development of AstroBEAR begins to incoporate radiation transfer,
we believe that the future lab astrophysics projects can be simulated using an tool

equipped with such physics.
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8.6 Concluding Remarks

Throughout this thesis, we have introduced a variety of problems related to inter-
stellar heterogeneous flows. It is worth noting that these problems are interconnected
through one of their key common properties: the underlying physics is governed by
inhomogeneity. In the heating problem of the WBB shell, the magnetic field struc-
ture is tangled locally. The local field loops are small enough compared to the length
scale of the shell, thus creating clumpy contacting region between the shell and the
heat reservoire. Here, we see one of the mechanisms in the interstellar environment
that clumps containing tangled magnetic field can be formed. In the shock-clump
interaction simulations, we investigated further the shocked behavior of these clumps
and derived useful mathematical models that can be used to estimate the dynamic
quantities of the clump remnant. We then demonstrated two important applications
of the shock-clump interaction model: one with star formation, which can be directly
linked to the possible explanation of the Solar System. In those simulations, we have
also discovered the importance of contained magnetic field: internal poloidal field
leads to stellar jets under triggered star formation. Another important application is
in the form of laboratory astrophysics. Heterogeneous flows containing complicated
magnetic field structure are found in many lab astrophysics experiments. We intro-
duced one of the leading projects AstroBEAR is involved in that is set to investigate
such problem. The problem of interstellar heterogeneous flows is a fascinating subject
that is classic among theorists and experimentalists, and yet, as demonstrated by this
thesis, still offers abound research opportunities. With the advance of numerical and
instrumentation technique, we would like to participate in further progressing this

field of research that has a promising future.
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