Graph Theory and Program Analysis

GRAPH-THEORETIC METHODS IN DATABASE THEORY

Mihalis Yannakakis

Secure programming via
game-based synthesis

William Harris

Graph Theory

* Problems

* transitive closure, shortest paths, bill of materials, critical
paths, regular expressions

* Algorithms

+ Kleene's alg. for regular expressions
* Floyd's alg. for shortest paths
+ Warshall's alg. for transitive closure

4l

Matrix Multiply on Semiring

* A closed semiring

+ 0 and 1 exists

+ product x is associative, closed under finite products

+ sum + is associative/commutative, closed under finite sums
+ x distributes over +

* A graph

+ 0is no path, 1 is null path

* sum combines multiple paths

+ product extends a path

fork := 1tondo

for all i, jdo
AY 1= AN AR @A) XAl

72

Reachability

* Problem

- Aij = 1 iff there is a path from i to j

+ Solution

- sum is ||, product is &&
« initial Aij = 1if ij connected; otherwise O

+ Explanation

+ connectivity including node k is the connectivity with node 1
to k-1, plus the connectivity from i to k, and plus the
connectivity from k to j

* Transitive closure can then be computed easily

for k := 1tondo
for all i, j do
A = AN T+ARN (AR xAN!

Database Queries

* Relational databases

+ “directed" hypergraphs, with labelled edges

+ a path “spells” a word

+ an L-path if the spelled word is in the language L

* Recursive queries

* need to compute the transitive closure

* not expressible in relational algebra/calculus

+ extensions in datalog and graph-oriented query languages
+ Datalog language

*example poxy) i go(XZu)s 44(Z1.Z2)ver 0aZD),

- variables, predicates, recursion

74

L-path

* A specification L

* a regular expression
- e.g. lock acquire/release/error DFA in SLAM

* e.g. even-length paths

* a context-free grammar
+ e.g. legal interprocedural paths in optimization

* A path satisfies L is an L-path
* SLAM

+ is there an L-path that reaches the error state anywhere in
code?
- is it an MOP problem?

+ Interprocedural analysis

+ what is MOP invariance at every point?

Lock Safety

do { l

KeAcquireSpinLock() ; f:(;
KeReleaseSpinLock() ;
} Rel \ / Acq
} while (*);
KeReleaseSpinLock () ; @

RE specification?

Type State Analysis (one slidel!)

languages. That is, we construct a graph H whose nodes are
pairs (s,u4) consisting of a state s of M and a node # of G, and
which has an arc labelled a from a node (s,u) to another node
(t,v) if M has a transition on letter a from state s to state ¢ and
G has an arc from z to v. (Actually, the labels in the product
graph are not important.) Let s, be the initial state of M and F
its set of accepting states. Then, the database graph G contains
an L-path from a node x to a node y iff (s4,x) can reach in the
product graph a state (t,y) with te F.

* A state space H for lock-safety analysis

* (prog point, lock status)

« (s,u) -> (t.v) if s->t and u->v

* problem: if (start, unlocked) can reach any
(s, error) in H

+ single-source transitive closure

Program Analysis as Queries

* Queries
* proposition logic
- SQL
* recursive
* regular
+ e.g. lock safety spec
+ context-free
+ e.g. datalog
* Type of queries
- existential: does something exist?
* universal: does the property always hold?

UNIVERSITY OF

COPENHAGEN

Type interpretation

Definition (Type interpretation)

The type interpretation T[.] compositionally maps a regular
expression E to the corresponding simple type:

T|I0]] =0 empty type
Tl = {0} unit type
Tla] = {a} singleton type
TIE+F] = TIEI+TIF] sum type
LIExF] = TIE]x TIF] product type
TIES] = {[v1,---,va] | vi € T[E]} list type

Department of Computer Sciend

http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/27 /slides/fritz.pdf

Secure programming via
game-based synthesis

William Harris

Uninstrumented | Privilege
Program Policy
THE uNIyERSITY
WISCONSIN l l
MADISON
OS weaver

[Instrumented Program

URCS Department Seminar, March 2014

Weaver PL results

* Automatically reproduced manually-written programs
and automatically wrote new ones from
small, declarative policies that
forbid known vulnerabilities

* Reduced weaving to game-based synthesis,
and proposed and evaluated
a novel symbolic game-solving algorithm [CAV ’12]

gzip on Capsicum

Server

gzip (argv) :

foreach (nm in argv):
IN: in = open (nm);
OUT: out = open (nm +
sync_fork() ;
drop_open() ;
ompress (in, out);
sync_join();
close(in);
close (out) ;

w

.gz") ;

At compress,
gzip should have exactly the
the last descriptors
allocated at IN and ouT

gzip game

close(in) ;
close (out) ;

Attacker
noop () X drop_open ()

compress (
in, out)

compress.
in, o

compress
in, out

compressé

in, ou

Non-instrumentation
state 0

*

close(in) ;
close (out)S

in
out

Weaver systems results

* Internal adoption: have engaged
both Capsicum and HiStar developers

» External adoption: used by DARPA evaluation
team to rewrite secure PHP interpreter as layer
of prototype secure software stack

» Future goal: release Capsicum weaver to

capsicum-dev
@D

Today's Topic: 2013 ACM Turing Award Goes to Leslie Lamport for
A i iability and Consi of C i

Tuesday, March 18, 2014

ACM has named Leslie Lamport, a
Principal Researcher at Microsoft
Research Silicon Valley, the recipient of
the 2C M. Turing d for
imposing clear, well-defined coherence
on the seemingly chaotic behavior of
distributed computing systems, in which
several autonomous computers
communicate with each other by passing
messages. He devised important
algorithms and developed formal
modeling and verification protocols that
improve the quality of real distributed
systems. These contributions have
resulted in improved correctness,
performance, and reliability of computer
systems.

Lamport's practical and widely used algorithms and tools have applications in
security, cloud systems and systems as well
as mission-critical computer systems that rely on secure information sharing
and interoperability to prevent failure. His notions of safety, where nothing
bad happens, and liveness, where something good happens, contribute to the
reliability and robustness of software and hardware engineering design. His
solutions for Byzantine Fault Tolerance contribute to failure prevention in a
system component that behaves erroneously when interacting with other
components. His creation of temporal logic language (TLA+) helps to write
precise, sound He also LaTeX, a

preparation system that is the de facto standard for technical publishing in
computer science and other fields.

Program Security

* Security = Safety + Liveness
* OS weaver

- safety

+ i.e. 'compress’ cannot have certain privileges

+ liveness
* i.e. 'compress’ can still be used correctly

+ Xiaochen's question at the talk
* Reachability analysis

+ can check for safety
- can it insert code as OS Weaver can?
+ what about liveness?

86

