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ACM has named Leslie Lamport, a
Principal Researcher at Microsoft
Research Silicon Valley, the recipient of
the 2013 ACM A.M. Turing Award for
imposing clear, well-defined coherence
on the seemingly chaotic behavior of
distributed computing systems, in which
several autonomous computers
communicate with each other by passing
messages. He devised important
algorithms and developed formal
modeling and verification protocols that
improve the quality of real distributed
systems. These contributions have
resulted in improved correctness,
performance, and reliability of computer
systems.

Lamport's practical and widely used algorithms and tools have applications in
security, cloud computing, embedded systems and database systems as well
as mission-critical computer systems that rely on secure information sharing
and interoperability to prevent failure. His notions of safety, where nothing
bad happens, and liveness, where something good happens, contribute to the
reliability and robustness of software and hardware engineering design. His
solutions for Byzantine Fault Tolerance contribute to failure prevention in a
system component that behaves erroneously when interacting with other
components. His creation of temporal logic language (TLA+) helps to write
precise, sound specifications. He also developed LaTeX, a document
preparation system that is the de facto standard for technical publishing in
computer science and other fields.

Graph Theory

• Problems
• transitive closure, shortest paths, bill of materials, critical 

paths, regular expressions
• Algorithms

• Kleene’s alg. for regular expressions
• Floyd’s alg. for shortest paths
• Warshall’s alg. for transitive closure
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Matrix Multiply on Semiring

• A closed semiring
• 0 and 1 exists
• product x is associative, closed under finite products
• sum + is associative/commutative, closed under finite sums
• x distributes over +

• A graph
• 0 is no path, 1 is null path
• sum combines multiple paths
• product extends a path
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Warshall’s algorithm for transitive closure). The matrix A0 
holds initially the labels 1 of the arcs of the graph, where 
A’” = 0 if the arc i + j is not present. After the kth itera- 
tion, A ‘I1 is the sum of the labels of all paths from i to j that use 
only the first k no&s. Superscripted matrices are used below 
for clarity: we do not need n matrices, but can do the computa- 
tion in place, except that if addition is not idempotent, then we 
must be careful to order properly the pairs i. j in the inner 
loop. The algorithm assumes that we can compute the closwe 

(or asteration) a* = xai of an element a of D. Assuming 
0 

that the operations +, x and * take unit time, the complexity is 
O(n3). 

fork := 1 tondo 
for all i. j do 

At : = At-1 +A;-1x(&’ )‘xA@’ 

Unlike the simple transitive closure problem, in the gen- 
eralized problem we cannot always take advantage of (1) spar- 
sity in the graph, and (2) restriction to single source or single 
sink problem. The easy case here is when the graph is acyclic 
and the hard case when the graph is strongly connected, in the 

sense that the problem for a general graph can be essentially 
reduced to its strongly connected components with linear over- 
head. In the acyclic case the single source problem can be 
solved in O(e) time, and therefore the all-pairs problem in time 
O(m), as follows. First, we compute a topological ordering of 
the nodes, that is, an ordering from 1 to n so that edges go from 
lower to higher nodes. Suppose we want to solve a single 
source problem, and assume without loss of generality that the 
source is node 1 and it can reach all the other nodes (we only 
care about nodes reachable from the source). Below, we use 
I(k, j) for the label of arc k -+ j, and compute the sum of the 
labels of all the paths from node to 1 to the other nodes j into 
L(l,j). 

for all j doL(1.j) := I(l,j); 
fork := 2 to n do 

for each immediate successor j of k do 
L(l,j) := L(l,j)+L(l,k)xl(k.j) 

For some classes of graphs one can do better than O(n3) 
using techniques from data flow analysis and linear algebra. 
Tarjan presents in [T2] a decomposition technique based on 
dominator trees, and shows how to solve the single source prob- 
lem on reducible flow graphs in almost linear time. And of 
course, for particular types of semirmg problems, there are spe- 
cialized algorithms that do better on general graphs (as, for 
example, in the special case of the ordinary transitive closure 
problem or shortest paths with positive weights). Indeed, a 
great deal of work in graph algorithms sims at developing effr- 
cient solutions for important cases of semiring problems, lie 
shortest paths. 

The following table summarizes the upper bounds that 
we know in path problems. In the table we assume e 2 n, and 

have dropped for clarity the big O(.) notation. M(n) denotes 
the time needed to multiply two nxn Boolean matrices. The 
standard algorithms used in practice for all-pairs transitive clo- 
sure on dense graphs take time O(n3), as does the ordinary 
matrix multiplication algorithm. In the generalized TC it is also 
true that the all-pans problem is equivalent to the multiplication 
of two matrices over the closed semiring, but in general there is 
no “fast” method and multiplication using only the semiring 
operations requires O(n3) time. 
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3. LIMITED SPACE ALGORITHMS 

Transitive closure is an important problem in studying 
space complexity classes. The graph reachability problem is in 
NSPACE(logn), i.e., it can be solved by a nondeterministic 
algorithm using logarithmic extra space (besides the input); the 
algorithm just “guesses” a path from the source to the sink node 
by no&. Conversely, a nondet erministic computation that uses 
a given amount of extra space S can be modeled by a reachabil- 
ity probhem in a graph of exponentially larger size cs, whose 
nodes correspond to the configurations of the machine and the 
arcs correspond to the transitions. Graph reachability is a com- 
plete problem for the class NSPACE(logn). Immerman &I] 
and Szelepcsenyi [Sz] showed recently the surprising result that 
nondeterministic space complexity classes are closed under 
complementation, by providing a logn-space nondeterministic 
algorithm for verifying that a source node cannot reach a sink 
node. 

The relation of nondeterministic to deterministic space 
complexity is an old open problem. By Savitch’s result, 
NSPACE( logn) is contained in DSPACE(log2n). The deter- 
ministic log2n-space algorithm for transitive closure that is 
implied by this simulation rediscovers the same path facts over 
and over again, and as a consequence, its time complexity is not 
even polynomial, but n’g”. Very little has been achieved in 
designing algorithms that are simultaneously space- and time- 
efficient. At present, we do not know of any algorithm that 
works in polynomial time with less than linear space l . The 

l For undii graphs, or more generally, Eulexian directed graphs (the 

number of arcs into each node is equal to the number of arcs coming out), 
it is possible to acbiwc polynomial time with a randomized algorithm that 
uses logn bits of space [A+]: A randan walk will visit will high probability 
every nachablc node withii polynomial time. and of course to implement 
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Reachability

• Problem
• Aij = 1 iff there is a path from i to j

• Solution
• sum is ||, product is &&
• initial Aij = 1 if ij connected; otherwise 0

• Explanation
• connectivity including node k is the connectivity with node 1 

to k-1, plus the connectivity from i to k, and plus the 
connectivity from k to j

• Transitive closure can then be computed easily
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O(n3). 

fork := 1 tondo 
for all i. j do 
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sity in the graph, and (2) restriction to single source or single 
sink problem. The easy case here is when the graph is acyclic 
and the hard case when the graph is strongly connected, in the 
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head. In the acyclic case the single source problem can be 
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O(m), as follows. First, we compute a topological ordering of 
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Tarjan presents in [T2] a decomposition technique based on 
dominator trees, and shows how to solve the single source prob- 
lem on reducible flow graphs in almost linear time. And of 
course, for particular types of semirmg problems, there are spe- 
cialized algorithms that do better on general graphs (as, for 
example, in the special case of the ordinary transitive closure 
problem or shortest paths with positive weights). Indeed, a 
great deal of work in graph algorithms sims at developing effr- 
cient solutions for important cases of semiring problems, lie 
shortest paths. 
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we know in path problems. In the table we assume e 2 n, and 
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standard algorithms used in practice for all-pairs transitive clo- 
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Database Queries

• Relational databases
• “directed” hypergraphs, with labelled edges
• a path “spells” a word
• an L-path if the spelled word is in the language L

• Recursive queries
• need to compute the transitive closure
• not expressible in relational algebra/calculus
• extensions in datalog and graph-oriented query languages

• Datalog language
• example

• variables, predicates, recursion
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There is a subtle, but important, point that arises in the 
presence of labels. In the ordinary transitive closure problem, if 
a node u can reach another node v, then it can reach it by a 
simple path, one that does not use any node or edge more than 
once. This is not true for L-paths: there may be an L-path from 
u to v but no simple L-path. Finding simple paths with desired 
properties in directed graphs is very difficult. Essentially every 
nontrivial property gives rise to an NP-complete problem [FH]: 
For example, it is NP-complete to tell whether there is a simple 
cycle containing two specified nodes; given three nodes x. y, z, 
it is NP-complete to tell whether there is a simple path from x 
to y that goes through z l . For this reason, we should allow for 
arbitrary paths, and will not require them to be simple. Mendel- 
zon and Wood study conditions on the graph and the language 
under which the existence of an L -path implies the existence of 
a simple one [MW]. 

The class of (elementary) chin queries in Datalog 
corresponds to L-path graph queries for context-free languages L 
[BKBR, UV]. A chain rule is a rule of the form: 

P(XJ> :- qo(X,Z, ). 41 (Z, ,Z,),..., q,(Z,,Y), 

where the qi’s are EDB (base) or IDB (derived) binary predi- 
cates, and X, Y and the Zi’S are distinct variables. That is, the 
graph of the body of the rule is a simple directed path from the 
first to the second argument in the head of the rule. We can 
assume that for every EDB predicate q we have also its inverse 
4 -’ so that the directions are not really important for the base 
predicates, but they are for the IDB predicates. A program P 
consisting of chain rules is a chain program. This is a res- 
tricted, but important class of programs. Taking the join of the 
predicates in the body of a rule in some order, requires merging 
predicates to form some acyclic hypergraph (where the edges 
may not be binary any more) [GS]. Chain rules represent the 
simplest type of acyclic bodies, where the join tree is just a 
path. Some query transformation methods that apply to special 
classes of recursion treat groups of EDB predicates in the 
bodies of the rules as black-box units, and in the process, often 
abstract them so that they look basically lie chain rules except 
that the qi’s are conjunctions of predicates, and X, Y etc. are 
tuples of variables. These programs generalize the usual para- 
digms of the ‘ancestor’ query (i.e., transitive closure) in its dif- 
ferent forms, and of the ‘same generation’ query on a graph 
with arcs labelled “flat”, “up” and “down”. 

sgGfJ7 :- up(X,.Z)sg(Z,W)down(W,Y) 
sg(X,Y) : - fkzt(X,Y> 

A chain program corresponds to a context-free grammar 
[UV]. The terminal and nonterminal symbols of the grammar 
correspond to the EDB and IDB predicates respectively, the ini- 
tial symbol corresponds to the goal predicate and the 

‘For undirected graphs. properties of this type can be tested in polynomial 
time by the wodc of Roberuon and Seymour [RS], but except for the sim- 
plest case.5 (patterns with very few nodes), the constants are extremely 
large. 

productions of the grammar are obtained from the rules of the 
program by ignoring the variables. For example, the above rule 
corresponds to the production p + qoql . . . qt. Let L be the 
context-free language defined by thii grammar, and let G be the 
database graph. That is, for every tuple (u.v) of an EDB predi- 
cate a, the graph G has an src (u,v) labelled a. Then a tuple 
(x,y) satisfies the goal predicate if and only if there is an L-path 
fromxtoyinG. 

A simple case is when L is a regular language [BKBR, 
MW, BKV]. Some examples that fall into this category are: 
1. The ordinary transitive closure problem: all edges have the 
same label a and L = a* or a+. 
2. Even-length paths: L = (ua)‘. 
3. Common ancestor problem: if u is a child-parent relationship 
and b its inverse, then two nodes x and y have a common 
ancestor if there is a path of the form a* b’ from x to y. 

Regular languages can be generated by left-linear gram- 
mars (or right-linear grammars), and thus regular path problems 
can be expressed by chain programs in Datalog that are one- 
sided (all rules are left-linear or all are right-linear). As shown 
in [BKBR], if L is regular (and only if), one can take full 
advantage of a selection in either one of the arguments of the 
goal predicate to rewrite the program so that the recursive predi- 
cates are monadic. 

A problem that is equivalent to L-transitive closure with 
L regular, is the problem of evaluating an expression E that is 
built from a given set of binary relations (the EDB predicates) 
using the operators U (union), . (composition), * (transitive clo- 
sure) [HSU, SU]; E is the regular expression for L. with . being 
concatenation and l the Kleene star. One can include also the 
operator -’ for taking the inverse of a relation; the inverse can 
be always pushed down to the base relations [SU]. 

The regular path problem can be reduced to ordinary 
transitive closure [HSU, Mw]. Let M be a (deterministic or 
nondeterministic) finite automaton for the language L. For any 
pair of nodes x, y of the database graph G, the labels of the 
paths from x to y in the graph G form a regular language P,,; 
this is the language accepted if we regard M as a finite automa- 
ton with initial state x and accepting state y. There is an L-path 
in G from x to y if and only if the intersection of L with P,,? is 
nonempty. An automaton for the intersection can be con- 
structed by taking the product of the automata for the two 
languages. That is, we construct a graph H whose nodes are 
pairs (s,u) consisting of a state s of M and a node u of G, and 
which has an arc labelled a from a node (s.u) to another node 
(t,v) if M has a transition on letter a from state s to state t and 
G has an arc from u to Y. (Actually, the labels in the product 
graph are not important.) Let so be the initial state of M and F 
ita set of accepting states. Then, the database graph G contains 
art L-path from a node x to a node y iff (so,x) can reach in the 
product graph a state (t.y) with tE F. 

If F has more than one states, we can modify the graph 
so that a single-source single-sink L-path query on G translates 
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L-path
• A specification  L

• a regular expression
• e.g. lock acquire/release/error DFA in SLAM
• e.g. even-length paths

• a context-free grammar
• e.g. legal interprocedural paths in optimization

• A path satisfies L is an L-path
• SLAM

• is there an L-path that reaches the error state anywhere in 
code?
• is it an MOP problem?

• Interprocedural analysis
• what is MOP invariance at every point?



Lock Safety

76

do {
 KeAcquireSpinLock();
 if(*){
  KeReleaseSpinLock();
 }
} while (*);
KeReleaseSpinLock();

while

lock

if

unlock

unlock

RE specification?

State Machine for 
Locking

Unlocked Locked

Error

Rel Acq

Acq
Rel

state {
  enum {Locked,Unlocked}  
 s = Unlocked;
}

KeAcquireSpinLock.entry {
  if (s==Locked) abort;
  else s = Locked;
}

KeReleaseSpinLock.entry {
  if (s==Unlocked) abort;
  else s = Unlocked;
}

Locking Rule in 
SLIC

Type State Analysis (one slide!)

• A state space H for lock-safety analysis
• (prog point, lock status)
• (s,u) -> (t,v) if s->t and u->v
• problem: if (start, unlocked) can reach any 

(s, error) in H
• single-source transitive closure

There is a subtle, but important, point that arises in the 
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properties in directed graphs is very difficult. Essentially every 
nontrivial property gives rise to an NP-complete problem [FH]: 
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sure) [HSU, SU]; E is the regular expression for L. with . being 
concatenation and l the Kleene star. One can include also the 
operator -’ for taking the inverse of a relation; the inverse can 
be always pushed down to the base relations [SU]. 

The regular path problem can be reduced to ordinary 
transitive closure [HSU, Mw]. Let M be a (deterministic or 
nondeterministic) finite automaton for the language L. For any 
pair of nodes x, y of the database graph G, the labels of the 
paths from x to y in the graph G form a regular language P,,; 
this is the language accepted if we regard M as a finite automa- 
ton with initial state x and accepting state y. There is an L-path 
in G from x to y if and only if the intersection of L with P,,? is 
nonempty. An automaton for the intersection can be con- 
structed by taking the product of the automata for the two 
languages. That is, we construct a graph H whose nodes are 
pairs (s,u) consisting of a state s of M and a node u of G, and 
which has an arc labelled a from a node (s.u) to another node 
(t,v) if M has a transition on letter a from state s to state t and 
G has an arc from u to Y. (Actually, the labels in the product 
graph are not important.) Let so be the initial state of M and F 
ita set of accepting states. Then, the database graph G contains 
art L-path from a node x to a node y iff (so,x) can reach in the 
product graph a state (t.y) with tE F. 

If F has more than one states, we can modify the graph 
so that a single-source single-sink L-path query on G translates 
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Program Analysis as Queries

• Queries
• proposition logic

• SQL
• recursive

• regular
• e.g. lock safety spec

• context-free
• e.g. datalog

• Type of queries
• existential: does something exist?
• universal: does the property always hold?

Regular Expression as Type

79

Type interpretation

Definition (Type interpretation)

The type interpretation T [[.]] compositionally maps a regular
expression E to the corresponding simple type:

T [[0]] = ; empty type
T [[1]] = {()} unit type
T [[a]] = {a} singleton type

T [[E + F ]] = T [[E ]] + T [[F ]] sum type
L[[E ⇥ F ]] = T [[E ]]⇥ T [[F ]] product type

T [[E ⇤]] = {[v
1

, . . . , vn] | vi 2 T [[E ]]} list type

14
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Secure programming via 
game-based synthesis

William Harris

!1

URCS Department Seminar, March 2014

!

OS weaver!

Uninstrumented 
Program

Privilege 
Policy

Instrumented Program

Problem: design a

!28

GeneratorWeaver

Weaver
• Automatically reproduced manually-written programs 

and automatically wrote new ones from  
small, declarative policies that  
forbid known vulnerabilities!

• Reduced weaving to game-based synthesis,  
and proposed and evaluated 
a novel symbolic game-solving algorithm [CAV ’12]
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PL results



  compress(in, out);

  close(in); 
  close(out);

sync_fork();  
 
 
sync_join();

gzip(argv):  
 foreach (nm in argv): 
IN: in = open(nm); 
OUT: out = open(nm + “.gz”);
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Server

Capsicumongzip

    drop_open();// @compress:  
// descs:  
// { last-from[IN],  
//   last-from[OUT] }

At compress, 
gzip should have exactly the  

the last descriptors  
allocated at IN and OUT

sync_join()

drop_open()noop()drop_open()noop()

*

a

b bb
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c

b

c

a

sync_fork()noop()

 in = ..  
out = .. 

compress(  
  in, out)

compress(  
  in, out)

compress(  
  in, out)

close(in); 
close(out);

compress(  
  in, out)

close(in); 
close(out);

 in = ..  
out = .. 

Attacker 
state

Non-instrumentation 
state

gzip game

• Internal adoption: have engaged  
both Capsicum and HiStar developers 

• External adoption: used by DARPA evaluation 
team to rewrite secure PHP interpreter as layer  
of prototype secure software stack 

• Future goal: release Capsicum weaver to 
capsicum-dev
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Weaver systems results
Today's Topic: 2013 ACM Turing Award Goes to Leslie Lamport for
Advancing Reliability and Consistency of Computing Systems

Tuesday, March 18, 2014

ACM has named Leslie Lamport, a
Principal Researcher at Microsoft
Research Silicon Valley, the recipient of
the 2013 ACM A.M. Turing Award for
imposing clear, well-defined coherence
on the seemingly chaotic behavior of
distributed computing systems, in which
several autonomous computers
communicate with each other by passing
messages. He devised important
algorithms and developed formal
modeling and verification protocols that
improve the quality of real distributed
systems. These contributions have
resulted in improved correctness,
performance, and reliability of computer
systems.

Lamport's practical and widely used algorithms and tools have applications in
security, cloud computing, embedded systems and database systems as well
as mission-critical computer systems that rely on secure information sharing
and interoperability to prevent failure. His notions of safety, where nothing
bad happens, and liveness, where something good happens, contribute to the
reliability and robustness of software and hardware engineering design. His
solutions for Byzantine Fault Tolerance contribute to failure prevention in a
system component that behaves erroneously when interacting with other
components. His creation of temporal logic language (TLA+) helps to write
precise, sound specifications. He also developed LaTeX, a document
preparation system that is the de facto standard for technical publishing in
computer science and other fields.

Program Security

• Security = Safety + Liveness
• OS weaver

• safety
• i.e. ‘compress’ cannot have certain privileges

• liveness
• i.e. ‘compress’ can still be used correctly
• Xiaochen’s question at the talk

• Reachability analysis
• can check for safety
• can it insert code as OS Weaver can?
• what about liveness?
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