Computational Astrophysics 8 The Equations of Magneto-Hydrodynamics

Romain Teyssier
Oscar Agertz

Outline

- Maxwell's equation
- Particle trajectories
- Kinetic theory
- Ideal MHD equations
- MHD waves
- Ambipolar diffusion

Maxwell's equation for the electromagnetic field

$$\nabla \cdot \mathbf{E} = 4\pi q$$

$$\nabla \cdot \mathbf{B} = 0$$

No magnetic monopole

$$\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{j}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

Classical theory for the electromagnetic field

Maxwell's equation in integral form

Consider a volume V bounded by a surface S:

Gauss theorem
$$\int_{S} \mathbf{E} \cdot \mathbf{n} d^{2}S = 4\pi \int_{V} q d^{3}V$$

Flux conservation
$$\int_{S} \mathbf{B} \cdot \mathbf{n} d^{2}S = 0$$

Consider a surface S bounded by a contour L:

$$\int_{L} \mathbf{E} \cdot \mathbf{n} dL = -\frac{1}{c} \partial_{t} \int_{S} \mathbf{B} \cdot \mathbf{n} d^{2}S$$

$$\int_{L} \mathbf{B} \cdot \mathbf{n} dL = 4\pi \int_{S} \mathbf{j} \cdot \mathbf{n} d^{2}S + \frac{1}{c} \partial_{t} \int_{S} \mathbf{E} \cdot \mathbf{n} d^{2}S$$

Related conservation laws

If one takes the divergence of Faraday's law (induction equation):

$$\nabla \cdot (\nabla \times \mathbf{E}) = -\frac{1}{\partial_t} \nabla \cdot \mathbf{B} = 0$$

If initially one has $\nabla \cdot \mathbf{B} = 0$ then this property is conserved for t>0.

If one takes the divergence of Ampère's law:

$$\nabla \cdot (\nabla \times \mathbf{B}) = \frac{1}{c} \partial_t \nabla \cdot \mathbf{E} + 4\pi \nabla \cdot \mathbf{j} = 0$$

Using Gauss theorem, we get the charge conservation equation:

$$\frac{1}{c}\partial_t q + \nabla \cdot \mathbf{j} = 0$$

A simple case: the Hydrogen plasma

$$n_e$$
 electron density $e = 4.8032 \times 10^{-10}$ Coulomb

 n_n neutral density or neutral Hydrogen density

 n_i ion density or proton density or ionized Hydrogen density

Proton mass
$$m_p = 1.6726 \times 10^{-24}$$
 g

Electron mass
$$m_e = 9.1094 \times 10^{-28} \, \text{g}$$

Total mass density

$$\rho = n_e m_e + n_i m_p + n_n m_H \simeq (n_i + n_n) m_p$$

Total charge density
$$q = e(n_i - n_e)$$

Total current density
$$\mathbf{j} = \frac{e}{c}(n_i \mathbf{v}_i - n_e \mathbf{v}_e)$$

Particle motions in a constant electromagnetic field

Particle acceleration due to the Lorentz force:

$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \pm e\left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right)$$

We are looking for solutions of the form: $\mathbf{v}(t) = \mathbf{v}_d + \mathbf{v}_g(t)$

Drift motion with constant velocity
$${f v}_d = c {{f E} \times {f B} \over {B^2}}$$
 $E_{//} = 0$

Gyro motion with time-varying velocity
$$m \frac{\mathrm{d}\mathbf{v}_g}{\mathrm{d}t} = \frac{\pm e}{c} \mathbf{v_g} \times \mathbf{B}$$
 Equilibrium between centrifugal and Lorentz forces gives

$$m\frac{{\rm v_g}^2}{r} = \frac{e}{c}{\rm v_g}B$$
 Electron and proton gyroradius $r_g = \frac{m{\rm v_g}c}{eB}$

Kinetic theory for a magnetized plasma

Electron, proton and neutral distribution fonctions

$$n_e = \int f_e(\mathbf{x}, \mathbf{v}, t) d^3 v \quad n_i = \int f_i(\mathbf{x}, \mathbf{v}, t) d^3 v \quad n_n = \int f_n(\mathbf{x}, \mathbf{v}, t) d^3 v$$

Boltzmann equation with Lorentz force

$$\partial_t f + \dot{\mathbf{x}} \partial_{\mathbf{x}} f + \dot{\mathbf{v}} \partial_{\mathbf{v}} f = (\partial_t f)_{coll}$$
$$\dot{\mathbf{v}} = \pm \frac{e}{m} (\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B})$$

$$\dot{\mathbf{x}} = \mathbf{v}$$

Two limiting cases:

- 1- Fully ionized Hydrogen plasma
- 2- Quasi-neutral fluid

Fully ionized Hydrogen plasma

Electron momentum conservation equation, using the Relaxation Time Approximation for the collision term:

$$\partial_t(n_e m_e \mathbf{u}_e) + \partial_x(n_e m_e \mathbf{u}_e \mathbf{u}_e) + \partial_x \mathbf{P}_e + n_e e(\mathbf{E} + \frac{1}{c} \mathbf{u}_e \times \mathbf{B}) = -n_e m_e \frac{\mathbf{u}_e - \mathbf{u}_i}{\tau_{ei}}$$

Using the current density, we can write the collision term as:

Because of the small electron mass, we neglect electron momentum and therefore we get the following equilibrium current:

$$\eta \mathbf{j} = \frac{1}{n_e e} \partial_x \mathbf{P}_e + (\mathbf{E} + \frac{\mathbf{u}_e}{c} \times \mathbf{B}) \qquad \eta = \frac{m_e c}{n_e \tau e^2}$$

where we introduce the plasma resistivity.

where we introduce the plasma resistivity. For a fully ionized Hydrogen plasma, $au \propto \frac{T_e^{3/2}}{T_e}$ so that $\eta \propto T_e^{-3/2}$

Resistivity does not depend on density and is larger for a cold plasma.

Fully ionized Hydrogen plasma

Ion momentum conservation equation with the opposite collision term (ion-electron collisions conserve total momentum):

$$\partial_t(n_i m_i \mathbf{u}_i) + \partial_x(n_i m_i \mathbf{u}_i \mathbf{u}_i) + \partial_x \mathbf{P}_i - n_i e(\mathbf{E} + \frac{1}{c} \mathbf{u}_i \times \mathbf{B}) = +n_e m_e \frac{\mathbf{u}_e - \mathbf{u}_i}{\tau_{ei}}$$

Using the equilibrium current in the collision term, we get the momentum equation:

$$\partial_t(\rho \mathbf{u}) + \partial_x(\rho \mathbf{u}\mathbf{u}) + \partial_x(\mathbf{P}_e + \mathbf{P}_i) - \mathbf{j} \times \mathbf{B} = 0$$

where mass is carried mainly by ions so that $ho \simeq n_i m_i$ $ule u \simeq u_i$

The electric field writes:
$$\mathbf{E} \simeq -\frac{\partial_x P_e}{n_e e} - \frac{\mathbf{u}}{c} \times \mathbf{B} + \eta \mathbf{j}$$

so that Faraday's law becomes:

$$\partial_t \mathbf{B} = \frac{c}{en_e^2} (\partial_x P_e) \times (\partial_x n_e) + \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (c\eta \mathbf{j})$$

Biermann battery

induction

resistivity

Weak magnetic field limit

During the reionization epoch, young stars photo-ionize their surroundings. Green is neutral hydrogen; orange is ionized hydrogen and electrons.

The Biermann battery proceed because electrons pressure gradient induce microscopic electric fields and currents. Magnetic fields of 10⁻²⁰-10⁻¹⁸ Gauss are generated during the 100 Myrs of reionization.

Ideal MHD limit

The magnetic field is strong enough so we can neglect the Biermann battery term, if the electron gyroradius is much smaller than the system size.

Exercise: prove this assuming that the flow velocity is sonic.

The magnetic resistivity is small enough so we can neglect the current term.

We get for the electric field
$$\mathbf{E} \simeq -\frac{\mathbf{u}}{c} \times B$$

so that Faraday's law becomes the induction equation $\partial_t \mathbf{B} = \nabla imes (\mathbf{u} imes \mathbf{B})$

Ampère's law writes
$$\nabla \times \mathbf{B} = 4\pi(\mathbf{j} + \mathbf{j}_d)$$

where we neglect the displacement current $4\pi \mathbf{j}_d = \frac{1}{c}\partial_t \mathbf{E}$

Exercise: prove that the displacement current is negligible for a non relativistic flow.

The ideal MHD equations

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

Momentum conservation
$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u}\mathbf{u} + P) - \mathbf{j} \times \mathbf{B} = 0$$

$$\partial_t(\rho\epsilon) + \nabla \cdot (\rho\epsilon\mathbf{u}) + P\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B})$$

Ampère's law

$$\nabla \times \mathbf{B} = 4\pi \mathbf{j}$$

No magnetic monopoles

$$\nabla \cdot \mathbf{B} = 0$$

The ideal MHD equations in conservative forms

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u} - \frac{1}{4\pi} \mathbf{B} \mathbf{B}) + \nabla P_{tot} = 0$$

$$\partial_t E + \nabla \cdot \left[(E + P_{tot}) \mathbf{u} - \frac{1}{4\pi} \mathbf{B} (\mathbf{B} \cdot \mathbf{u}) \right] = 0$$

Magnetic flux conservation

$$\partial_t \mathbf{B} + \nabla \times (\mathbf{B} \times \mathbf{u}) = 0$$

$$E = \rho \epsilon + \frac{1}{2} \rho \mathbf{u}^2 + \frac{1}{8\pi} \mathbf{B}^2$$

$$P_{tot} = P + \frac{1}{8\pi} \mathbf{B}^2$$

$$\nabla \cdot \mathbf{B} = 0$$

The ideal MHD equations in 1D

For 1D (plane symetric flow), one has $\nabla \cdot \mathbf{B} = 0 \rightarrow B_x = \text{constant}$

The vector of conservative variables writes $\mathbf{U} = (\rho, \rho u, \rho v, \rho w, B_v, B_z, E)$

For 1D (plane symetric flow), one has
$$\nabla \cdot \mathbf{B} = 0 \to B_x = \mathrm{constant}$$
 The vector of conservative variables writes $\mathbf{U} = (\rho, \rho u, \rho v, \rho w, B_y, \mathbf{U})$ Ideal MHD in conservative form: $\partial_t \mathbf{U} + \partial_x \mathbf{F}(\mathbf{U}) = 0$ Flux function $\mathbf{F} = \begin{bmatrix} \rho u \\ \rho u^2 + P_{tot} - B_x^2 \\ \rho uv - B_x B_y \\ \rho uw - B_x B_z \\ B_y u - B_x v \\ B_z u - B_x w \\ (E + P_{tot}) u - B_x (B_x u + B_y v + B_z w)$

MHD waves

Compute the Jacobian matrix
$$J = \frac{\partial F}{\partial U}$$

It has 7 real eigenvalues (ideal MHD equations are hyperbolic), one for each wave:

2 fast magnetosonic waves:
$$\lambda_1 = u - c_f$$
 $\lambda_7 = u + c_f$

2 Alfven waves:
$$\lambda_2 = u - c_a$$
 $\lambda_6 = u + c_a$

2 slow magnetosonic waves:
$$\lambda_3 = u - c_s$$
 $\lambda_5 = u + c_s$

1 entropy waves:
$$\lambda_4 = u$$

Fast magnetosonic waves are longitudinal waves with variations in pressure and density (correlated with magnetic field)

Slow magnetosonic waves are longitudinal waves with variations in pressure and density (anti-correlated with magnetic field)

Alfven waves are transverse waves with no variation in pressure and density. Entropy wave is a contact discontinuity with no variation in pressure and velocity.

MHD wave speed

Sound speed:
$$c_0^2=\frac{\gamma P}{\rho}$$
 Alfven speed: $c_{a,x}^2=\frac{B_x^2}{4\pi\rho}$ $c_a^2=\frac{B^2}{4\pi\rho}$

Fast magnetosonic speed:
$$c_f^2 = \frac{1}{2}(c_0^2 + c_a^2) + \frac{1}{2}\sqrt{(c_0^2 + c_a^2)^2 - 4c_0^2c_{a,x}^2}$$

Slow magnetosonic speed:
$$c_s^2 = \frac{1}{2}(c_0^2 + c_a^2) - \frac{1}{2}\sqrt{(c_0^2 + c_a^2)^2 - 4c_0^2c_{a,x}^2}$$

$$u - c_f < u - c_a < u - c_s < u < u + c_f < u + c_a < u + c_s$$

In some special cases, some wave speeds can be equal:

The ideal MHD system is not strictly hyperbolic.

This can lead to exotic features such as *compound waves* (for example a mixture of Alfven wave and shock)

Ideal MHD as a frozen-field limit

Integral form of the induction equation:

$$\partial_t \int_{S} \mathbf{B} \cdot d\mathbf{s} = \int_{L} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l}$$

For any surface bounded by a closed contour, the magnetic flux variation is given by the circulation of the electric field along the closed contour.

For any volume bounded by a closed surface, the total magnetic flux is zero:

$$\int_{S} \mathbf{B} \cdot d\mathbf{s} = \int_{V} (\nabla \cdot \mathbf{B}) d\mathbf{v} = 0$$

The induction equation writes $\partial_t \mathbf{B} = (\mathbf{B} \cdot \nabla)\mathbf{u} - (\mathbf{u} \cdot \nabla)\mathbf{B} - (\nabla \cdot \mathbf{u})\mathbf{B}$

Using the continuity equation, we get finally:
$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathbf{B}}{\rho}\right) = \left[\left(\frac{\mathbf{B}}{\rho}\right) \cdot \nabla\right]\mathbf{u}$$
 Defining a field line as $\delta \mathbf{x} \propto \mathbf{B}/\rho$ we get $\frac{\mathrm{d}}{\mathrm{d}t}\left(\delta \mathbf{x}\right) = \left[\left(\delta \mathbf{x}\right) \cdot \nabla\right]\mathbf{u}$ The magnetic field lines are moving with the plasma velocity.

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\delta\mathbf{x}\right) = \left[\left(\delta\mathbf{x}\right)\cdot\nabla\right]\mathbf{u}$$

The magnetic field lines are moving with the plasma velocity.

Beyond ideal MHD: magnetic diffusion

If we don't neglect magnetic resistivity, we have $\mathbf{E} = \eta \mathbf{j} - \frac{\mathbf{u}}{c} \times B$

The induction equation now becomes

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \frac{c}{4\pi} \nabla \times (\eta \nabla \times \mathbf{B})$$

Assuming a constant coefficient, we can write the resistive term as a diffusion process:

 $\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \frac{c\eta}{4\pi} \Delta \mathbf{B}$

D is the magnetic diffusivity coefficient and R_M the magnetic Reynolds number

$$D = \frac{c\eta}{4\pi} \qquad \qquad R_M = \frac{L\mathbf{u}}{D}$$

For a fully ionized Hydrogen plasma, one has D=10^{13.1} T^{-3/2} in cgs units.

Microscopic magnetic diffusion is relevant for molecular core and planet formation.

The diffusive MHD equations

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

Momentum conservation
$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u}\mathbf{u} + P) - \mathbf{j} \times \mathbf{B} = 0$$

$$\partial_t(\rho\epsilon) + \nabla \cdot (\rho\epsilon\mathbf{u}) + P\nabla \cdot \mathbf{u} = c\eta\mathbf{j}^2$$

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) - c\nabla \times (\eta \mathbf{j})$$

Ampère's law

$$\nabla \times \mathbf{B} = 4\pi \mathbf{j}$$

No magnetic monopoles

$$\nabla \cdot \mathbf{B} = 0$$

Quasi-neutral fluid: ambipolar diffusion

We write the 3 momentum conservation laws with the main collision terms:

$$\partial_{t}(n_{e}m_{e}\mathbf{u}_{e}) + \partial_{x}(n_{e}m_{e}\mathbf{u}_{e}\mathbf{u}_{e}) + \partial_{x}\mathbf{P}_{e} + n_{e}e(\mathbf{E} + \frac{1}{c}\mathbf{u}_{e} \times \mathbf{B}) = -n_{e}m_{e}\frac{\mathbf{u}_{e} - \mathbf{u}_{i}}{\tau_{ei}}$$

$$\partial_{t}(n_{i}m_{i}\mathbf{u}_{i}) + \partial_{x}(n_{i}m_{i}\mathbf{u}_{i}\mathbf{u}_{i}) + \partial_{x}\mathbf{P}_{i} - n_{i}e(\mathbf{E} + \frac{1}{c}\mathbf{u}_{i} \times \mathbf{B}) = +n_{e}m_{e}\frac{\mathbf{u}_{e} - \mathbf{u}_{i}}{\tau_{ei}} - n_{i}m_{i}\frac{\mathbf{u}_{i} - \mathbf{u}_{n}}{\tau_{in}}$$

$$\partial_{t}(n_{n}m_{n}\mathbf{u}_{n}) + \partial_{x}(n_{n}m_{n}\mathbf{u}_{n}\mathbf{u}_{n}) + \partial_{x}\mathbf{P}_{n} = +n_{i}m_{i}\frac{\mathbf{u}_{i} - \mathbf{u}_{n}}{\tau_{ei}}$$

We neglected electron (versus ion) momentum because $m_e \ll m_i$.

Now, we also neglect ion (versus neutral) momentum because $n_i \ll n_n$.

Neglecting ion and electron pressures, we get $\mathbf{j} \times \mathbf{B} = n_i m_i \frac{\mathbf{u}_i - \mathbf{u}_n}{\tau_{in}}$

We finally get for the neutral fluid the ideal MHD equations

$$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u}\mathbf{u} + P) - \mathbf{j} \times \mathbf{B} = 0$$

$$\mathbf{u} \cong \mathbf{u}_n$$

$$\rho \simeq n_n m_n$$

Quasi-neutral fluid: ambipolar diffusion

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u}_i \times \mathbf{B})$$

The induction equation still writes:
$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u}_i \times \mathbf{B})$$
 Using the equilibrium (force balance) limit,
$$\mathbf{u}_i = \mathbf{u}_n + \frac{\tau_{in}}{\rho_i} \mathbf{j} \times \mathbf{B}$$

We get the induction equation in the ambipolar limit

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \nabla \times (\mathbf{v}_d \times \mathbf{B})$$

V_d drift velocity

Using Ampère's law, $\nabla imes \mathbf{B} = 4\pi \mathbf{j}$ we get a very complex, non-linear diffusion process for the field lines with respect to the flow (ion) velocity that writes

$$\nabla \times \left[\left(\frac{\tau_{in}}{4\pi\rho_i} \left[\nabla \times \mathbf{B} \right] \times \mathbf{B} \right) \times \mathbf{B} \right] \qquad \tau_{in} = \frac{10^{-13}}{\rho_n} \quad \text{sec}$$

By analogy to magnetic diffusion, one can define the diffusion coefficient D

$$D \simeq 10^{-13} \frac{B^2}{4\pi \rho_i \rho_n}$$
 and the ambipolar diffusion time scale $t_{AD} = L^2/D$

Conclusion

- Kinetic theory as the origin of the ideal MHD equations
 - 1- we neglected electrons inertia,
 - 2- we neglected displacement current,
 - 3- we assume vanishing resistivity (small collision time)
- Non-ideal effects that can be taken into account easily:
 - 1- by adding resistivity
 - 2- by considering ambipolar diffusion (quasi-neutral fluid)
 - 3- by adding viscosity and thermal conduction
- Transport coefficients (viscosity and thermal conduction) now depend on the direction and on the magnitude of the magnetic field (see Braginskii, S.I., 1965, Rev. Plasma Phys.)

Next lecture: computational MHD