

In AstroBEAR, we solve the following Euler equation :

where the internal energy per unit volume is defined as:

The code is also capable of solving the Euler equation with central or point gravity,
self-gravity, resistive MHD et al. Those are ignored here.

Then the following Euler equation is solved using Riemann solver:

The diffusion part is separated by the operator splitting method. After converting
internal energy to temperature, the separated diffusion equation is:

Use 1-D case (along y axis) as an example, the equation is:

Then, using Crank-Nicholson scheme, we convert the diffusion equation

into

where , and “*” denotes the newer time step we are solving.

By differentiating the above equation, we have:

Using Taylor expansion,

We convert the diffusion equation into:

where

This equation has a form of

with

The linear equations with this form is solved using the Hypre, which is essentially
a library of linear solvers.
The entire process is summarized below:

(1) Riemann solver solves the classical fluid equation and updates the
temperature.

(2) Using the updated temperature, we get all the “a” factors on the previous
page, and construct the linear equation system.

(3) The preferred time step “dt” on the previous page is found by the following
equation:

where “min” is taking the minimum over the entire computation domain, “l” is the local
temperature scale length:

(4) The linear solver solves the system with time step dt, updates the temperature. It recycles
till the accumulated time step equals the time step taken by the Riemann solver.

(5) Then the final updated temperature is used to calculate the internal energy, the
updated internal energy goes into the next Riemann solver step.

Our problem is a RT instability with thermal diffusion and a heat flux applied at the
bottom. The fluid has a speed profile along y direction. There is a uniform gravity
applied on the -y direction. The density, velocity and temperature profiles are shown
below:

Here, blue is density,
red is temperature, black is y velocity.
The horizontal axis is the y direction, the
physics quantities are normalized to their
peak values. There is a strong heat flux
q applied at the bottom (y=0).

The boundary condition is treated as follows (I'll only mention the bottom boundary
since that is where things are tricky):

(1) In the Riemann solver part, we have the following equations at the bottom
boundary:

where “0” and “1” denote boundary (ghost zone) cell and the first internal cell, respectively.
“q” is the applied boundary heat flux, which is given fixed.

From the diffusion equation, we have:

Since T1 is known, we can solve this nonlinear equation using Newton's Method.

Then we convert the equilibrium equation

to quadratic equation about density:

Since rho0 is the only unknown here, we solve this quadratic equation to obtain rho0.
We then obtain v0 using the mass flow conservation:

with

(2) In the diffusion equation solver, we apply the boundary condition as follows:
Remember that we can convert the diffusion equation into the following linear system
(page 4):

At the bottom boundary, since we are solving the system implicitly, we
should really have:

But since this equation does not give us an explicit relation of T0 and T1, I am using the
following equation instead:

This equation can be converted into the following relation:

where dT is given by:

So by substituting T0 into the first equation on the previous page, we can elliminate
T0 in that equation. This is equivalent to changing the first few “a” coefficients in
the linear system (see previous page) to “a' ”:

Since a0 now equals 0, the linear system is closed. We solve the system using the
linear solver library.

The problem we encounter is that when using the solver described above, the temperature
at the bottom of the domain always seems to rise after a short while (shorter than the
sound crossing time or RT growth time) although it should be in equilibrium. Here are the
plots for the temperature cut on y direction (see page 6 for initial profile). The numbers
and scaling seem to be correct – the heat flux and the thermal diffusion at the bottom
should provide the exact support for the profile to sit there for a long time. It seems that
the way the boundary condition is applied is not exactly correct since the rest of the
domain sits still.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

