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ABSTRACT

We consider a Hartmann layer, stationary flow of a viscose and resistive fluid between two plates with
superimposed transverse magnetic field, in the limit of gyrotropic plasma, when viscosity across the field is
strongly suppressed. For zero cross-field viscosity, the problem is not well posed, since viscosity then vanishes
on the boundaries and in the middle of the layer, where there is no longitudinal field. An additional arbitrarily
small isotropic viscosity allows one to find magnetic field and velocity profiles that are independent of this
viscosity floor and different from flows with isotropic viscosity. Velocity sharply rises in a thin boundary layer,
and the thinness of this boundary layer depends both on the Hartmann number and on the Lundquist number of
the flow. The implication of the work is that, in simulating ICM dynamics, it is imperative to use numerical
schemes that take into account anisotropic viscosity. Although magnetic fields are dynamically subdominant in
the ICM, they do determine its dissipative properties, the stability of embedded structures, and the transition to
turbulence.

Subject heading: galaxies: clusters: general

1. INTRODUCTION

Gasdynamical interactions of magnetized flows in the cores
of clusters of galaxies play an important role in the formation
of the observed morphological structures, e.g., by the expansion
of an AGN-blown bubble into the intracluster medium (ICM)
and the resulting plasma heating, and by the interaction of two
gas components in merging clusters (e.g., Markevitch & Vikh-
linin 2007). The majority of theoretical work on these topics has
been numerical, mostly using the existing fluid and MHD codes,
like ZEUS. Unfortunately, for cluster cores, simple hydrody-
namic models “face multiple failures” (Reynolds et al. 2005).
Perhaps, the most evident examples are the Raleigh-Taylor and
Kelvin-Helmholtz instabilities of AGN-blown bubbles; these in-
stabilities disrupt the bubbles on approximately one rise time
(e.g., Kaiser et al. 2005). On the other hand, artificial fiddling
with viscosity—which is usually parameterized with respect to
the Braginskii (1965) value (this procedure is not justified in the
ICM; see Schekochihin et al. 2005 and Lyutikov 2007)—shows
that “modest” changes of shear viscosity lead to qualitatively
different results (increased viscosity makes the ICM plasma gel-
like and quenches the instability; see, e.g., Reynolds et al. 2005
and Sijacki & Springel 2006).

One of principal reasons, perhaps, for the failure of simple
MHD codes is that they use isotropic viscosity, whereas ICM
plasma is strongly gyrotropic, in the sense that it is weakly
collisional (i.e., , where rL is ion Larmor radius, lr K l ≤ LL

is mean free path, and L is a typical size of the system) and
weakly magnetized (i.e., the kinetic pressure p is much larger
than the magnetic pressure: , where B is a2b p 8pp/B k 1
typical magnetic field). In ICM, the ion Larmor radius (r ∼L

) cm) is many orders of magnitude smaller than the8 910 –10
mean free path ( cm); the size cm,22 23 24l ∼ 10 –10 L ∼ 10
whereas (Carilli & Taylor 2002).b ∼ 100

In a strongly gyrotropic plasma, the local transport proper-
ties, primarily viscosity and conductivity, become anisotropic
(Braginskii 1965). The effects of anisotropic viscosity and con-
ductivity are expected to substantially change the results of
ICM simulations. As a simple example, note that the magnetic
field is draped around the contact surface that separates the

two interacting media (Lyutikov 2007). In a strongly gyrotropic
plasma, the shear viscosity inside the draping layer, with a flow
along magnetic field lines, then becomes 0. This runs contrary
to the idea that high viscosity provides stabilization (Reynolds
et al. 2005). Note that draping itself can provide stabilization
against Kelvin-Helmholtz instability, in a way that is similar
to the effect that a thin layer of oil has on water (Dursi 2007).

Understanding the basic properties of strongly gyrotropic
plasma is imperative for further progress, especially for param-
eterization of the “subgrid” physics in large numerical simu-
lations. In this Letter, we adapt one of the basic solutions of
MHD, the Hartmann flow (e.g., Landau & Lifshitz 1984), to
a viscosity that is anisotropic.

2. HARTMANN FLOW WITH ANISOTROPIC VISCOSITY

Let us consider a one-dimensional (along the x-direction)
flow of weakly collisional plasma between two plates located
at with a superimposed external magnetic field (gen-z p �a
erally, oblique). This is meant to represent a boundary layer
during the interaction of two plasma flows in the ICM. In the
Chew-Goldberger-Low approximation (with zero Larmor ra-
dius and neglecting heat fluxes; Chew et al. 1956), the equations
of resistive plasma flow read (Kulsrud 2005) as follows:

dv 2 2ˆ ˆp �∇(P � B /2) � ∇[bb(P � P � B )],⊥ k ⊥dt

ˆ ˆP � P p 3h d ln B p 3h (bb�v),k ⊥ 0 t 0

� B p (� � v) � B � h · DB, (1)t r

where is the first Braginsky coefficient (Braginskii 1965),h0

the resistivity is a tensor, and is a unit vector alongˆh b p B/Br

the magnetic field. We also absorbed a factor into the�4p
definition of the magnetic field.

Assuming that all quantities are independent of x and y, from



L116 LYUTIKOV Vol. 673

Fig. 1.—Function f (longitudinal magnetic field) for and differenta p 1
, 3.1, and 4.5 (from bottom to top) (larger values of are difficult toG p 1 G

resolve numerically).

Fig. 2.—Effect of finite isotropic viscosity on the structure of magnetic field
for , 0.005, 0.0001, and 10�10 (from bottom to top), . Forf p 0.1 a p G p 1r

small enough , solutions are nearly independent of the exact value of .f fr r

, we find . Introducing� · B p 0 B p const p B B pz 0 x

, , the x-component of the Euler equation givesB f (z) v p v0 x

′ 2v f2 ′B f � 3h � � � P p 0, (2)0 0 z x ⊥[ ]2 2(1 � f )

where is the constant pressure gradient driving� P p DP/Lx ⊥
the flow and is the drop in pressure over the length L.DP
Equation (2) can be integrated once

′ 2DP v f2B f � (z � z ) � 3h p 0. (3)0 0 0 2 2L (1 � f )

The integration constant is a point where .z f p 00

Assuming that the y-component of the magnetic field van-
ishes, so that current flows across the magnetic field as j p

, the resistivity equation givesj ey y

′ ′′v p �h f . (4)⊥

Here is the resistivity across the magnetic field. Finally,h⊥
eliminating from equation (2) by use of equation (3), we get,′v
for f, the following equation:

′′ 2DP f f2B f � (z � z ) � 3h h p 0. (5)0 0 0 ⊥ 2 2L (1 � f )

This is the main equation that determines the structure of the
flow. For an anisotropic viscosity, it is a nonlinear equation. It
differs from isotropic viscosity (e.g., Landau & Lifshitz 1984
§ 67) by having a different viscosity term,

2f
h p 3h . (6)eff 0 2 2(1 � f )

Renormalizing, , and introducingz r za z r z a a p0 0

, we find2(B /DP)(L/a)0

′′ 21 f f
z � z � a f � p 0, (7)0 [ ]2 2 2G (1 � f )

where

B a0G p , (8)�3h h0 r

which we identify as the Hartmann number.
The boundary conditions are somewhat tricky in this case.

From the continuity of the tangential magnetic field (assuming
that there is no surface current) and from the symmetry of the
flow, it is required that at and that atf p f z p �a f p 00

point , where is an imposed longitudinal magnetic field.z f0 0

Below we consider the case when there is no superimposed
longitudinal magnetic field, , and .f p 0 z p 00 0

On the other hand, at surfaces where (at the bound-B ∝ f p 0x

aries and in the middle), there is no viscosity (see eq. [6]), so the
usual conditions of at do not to be satisfied. Thus,v p 0 z p �a
in principle, the flow may slip along the boundaries and may have
a discontinuity in the middle. This will make the problem un-
solvable, as the order of the ordinary differential equation would
be higher than the number of boundary conditions.

In fact, it is necessary to assume that there is some limit to
the viscosity, to get a physically meaningful solution for equa-
tion (6), even if we just impose condition at .f p 0 z p �a
Near points where , equation (6) reduces tof p 0 f p (z �

, so that the derivative of f at these points has a definitez )/a0

sign, given by the parameter a. Thus, f can be zero only once.
And because in middle of the layer, it would clearlyf p 0
violate the conditions for a parallel magnetic field to vanish on
the walls of the layer.

Introducing the resistivity limit in equation (6) by substi-fr

tuting , we can integrate equation (6) numerically2 2f r f � fr

(see Fig. 1).
For sufficiently small values of this viscosity limit, the final

result is independent of its exact value (see Fig. 2).
The somewhat unphysical value of can be expressedDP/L

in terms of the bulk velocity in the middle of the layer:v0

2DP v B v h0 00 0∼ p , (9)2 2L G h a⊥

which gives , where we identified2 2a p G (h /v a) p G /Lu⊥ 0

the ratio with the magnetic Reynolds number Re or withv a/h⊥0
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Fig. 3.—Comparison of analytical magnetic field profiles (multiplied by a

for better graphical representation) for isotropic (Landau & Lifshitz 1984;
) and approximate anisotropicf ∝ [(z/a) sinh G � sinh (zG/a)] /(cosh G � 1)

(eq. [9]) viscosity for and different parameters and 110. ForG p 10 a p 0.1
, the boundary layer is narrower for anisotropic viscosity than it is fora 1 1

isotropic viscosity.

the Lundquist number Lu. Parameter a plays an important role
in determining the dynamics of the layer. If viscosity is dom-
inated by ion-ion collisions, we can estimate ,a ∼ 1/(bM Kn)s

where b is the plasma b-parameter (the ratio of kinetic to
magnetic pressure), is the flow Mach number (theM p v /cs0

ratio of velocity to sound speed ), and is the Knud-c Kn p l/as

sen number, which is the ratio of the mean free path l to the
characteristic length scale a.

These solutions are quite different from those for isotropic
viscosity (Landau & Lifshitz 1984), and they have a number
of particular features (Fig. 3). On the one hand, for large

, in the bulk of the flow, the profile of f is linearlyG k 1
increasing ( ; i.e., the flat velocity profile), which is sim-f ∼ z/a
ilar to that for isotropic viscosity. The parallel magnetic field
drops back to 0 within a narrow boundary layer. Let us estimate
the thickness of this boundary layer. Near the boundary, f r

, so that an approximate solution to equation (6) is0

2 2�(1� 1�4G a )/2z a z
f p � . (10)( )a a a

If we define the thickness of the boundary layer d when
, we find′f p 0

d ln (aG) Lu∼ ∼ ln (aG) , (11)3a aG G

where we assume . This expression can be comparedGa k 1
with the that for isotropic viscosity, when . The ratiod /a ∼ 1/Gi

. Thus, parameter measures the2 2d/d ∼ 1/a p Lu/G a p G /Lui

relative concentration of a magnetic field profile toward the
wall; for , the boundary layer for anisotropic viscosity isa 1 1
narrower than that for isotropic viscosity.

In most applications, the ratio is very small. For ex-3Lu/G
ample, for the typical parameters of the ICM (i.e, velocity
∼1000 km s�1, layer thickness ∼1 kpc, and plasma ),b p 100
we estimate Lu p 1027, , so that , and12 3 �9G p 10 Lu/G ∼ 10
thus .d K a

3. CONCLUSION

In this Letter we considered a basic problem in plasma phys-
ics, i.e., the Hartmann flow with anisotropic viscosity. We first
argued that, when transverse viscosity is suppressed com-
pletely, the problem cannot be formulated in a physically mean-
ingful way; there should be some small isotropic contribution
to viscosity. We derived magnetic field and velocity profiles,
which, in the limit of small isotropic viscosity, are independent
of its exact value. These profiles are considerably different from

those for isotropic viscosity. The velocity gradients are much
more concentrated close to the walls of the channel for aniso-
tropic viscosity than they are for isotropic viscosity.

How important is the structure of a boundary layer for the
overall structure of the flow? On the one hand, in a laminar
regime at low Reynolds numbers, the structure of the boundary
layer is probably not important; in the boundary layer. the
relative velocity just drops to zero, according to some law,
without affecting the overall structure of the flow. On the other
hand, the properties of the boundary layer determine its stability
and, thus, its transition to turbulence (Landau & Lifshitz 1959).
In ICM plasma, the Reynolds numbers are in the range Re ∼
10–1000, while, typically, transition to turbulence occurs at
Re ∼ 100–1000. (Transition to turbulence occurs in the bound-
ary layer). Thus, we expect that the effects of anisotropic vis-
cosity are likely to be very important for ICM plasma, espe-
cially for determining its transition to turbulence.

Thus, in simulating ICM dynamics, it is imperative that we
use the appropriate numerical schemes that take into account
anisotropic viscosity (and, to a lesser extent, conductivity), like
the ones that have been applied to accretion disks (Sharma et
al. 2007). Although magnetic fields are dynamically subdom-
inant in the ICM (i.e., the plasma b-parameter is large), they
do in fact determine its dissipative properties, the stability of
embedded structures, and the transition to turbulence.
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