
SCALING AND PERFORMANCE

PROGRESS TOWARDS A COMPREHENSIVE THEORY OF STAR FORMATION –
FROM BROWN DWARFS TO HIGH MASS STARS, CLUSTERS AND ON TO GIANT
MOLECULAR CLOUDS

Richard I. Klein

Department of Astronomy, University of California, Berkeley, and Lawrence Livermore National
Laboratory, P.O. Box 808, L-23, Livermore, CA 94550

A. Computational Methodology/Algorithms
First, the code employs a conservative higher-order Godunov scheme to solve the equations of

compressible magneto-hydrodynamics using optimized approximate Riemann solvers (Toro, 1997).
The algorithm is second-order accurate in both space and time for smooth flow problems, and it
has a robust and accurate treatment of shocks and contact discontinuities. We have both pure HD
and ideal MHD modules using an unsplit TVD scheme, equipped with different Riemann solvers
including the Roe, and the HLL-family solvers (Li et al. 2012).

The second major component of the code is a highly scalable self-gravity solver developed by
Martin et al. (2008). At each time step we solve a Poisson problem on the adaptive grid hierarchy
to obtain the gravitational potential; we then apply the gradient of this potential as a source
term in the momentum and energy equations (Truelove et al. 1998). A multigrid iteration scheme
is used to solve the linear system of equations resulting from the discretization of the Poisson
equation on a level. These level solutions are then iterated to convergence to obtain a solution for
the gravitational potential on all levels.

The third component is an adaptive, coupled radiation hydrodynamics solver using single-
frequency flux-limited diffusion. The radiation transfer module uses a split method optimized
for physical conditions where radiation-gas energy exchange by emission/absorption dominates
the work done by the radiation field on the gas. First, the code solves a fully implicit system
consisting of the emission/absorption and diffusion parts of the radiation and gas energy equations
(Howell & Greenough 1999). It uses a Newton-Raphson iteration method, with an adaptive
parallel multigrid method to find provisional solutions in each loop of the iteration. Once the
implicit system reaches convergence, the algorithm updates the gas and radiation states using
explicit forms of the radiation pressure force, work and advection terms to O(v/c). This allows
the incorporation of radiation pressure with no significant increase in computational cost, while
maintaining high accuracy in the regimes with which we are concerned.

The fourth component is an adaptive ray tracing method developed by Abel & Wandelt
(2002) and Abel et al. (2007). In this method, we solve the radiative transfer equation along rays
which split when the area they subtend exceeds a threshold, usually set to one-forth of a cell area.
This allows excellent angular resolution everywhere without requiring an extraneous number of
rays near the source. At the beginning of each ray trace, each source launches photon packets
that travel until they reach a grid edge or lose 99.9% of their initial photon flux. Once photon
packets are released, each processor loops over their packets, moving them from grid to grid until
they are extinguished or reach the end of the grid domain for that particular processor. At grid
edges, the photon packet uses ORION2’s AMR framework to find its next grid. Each processor
then communicates with the other processors to see if photon packets need to be exchanged. This
process repeats until all photon packets are extinguished. Now with the photoionization rates
computed, the ionization time step is set to be the maximum value that restrains any cell from
changing its neutral fraction by more than 10%. Equivalently, this prevents an ionization front
from moving through a cell in less than ten ray trace cycles. This choice follows Krumholz,

– 2 –

Stone, & Gardiner (2006), who showed this allows for accurate solutions because it ensures
the change in the cell’s thermal energy due to ionization heating or recombination cooling is
constrained. The entire ray trace process is repeated until the hydrodynamic time step has elapsed.
Then, the FLD solver computes a new solution for the non-ionizing radiation, hydrodynamics is
updated via a TVD or PPM scheme, and the update is complete (Oishi et al. 2010).

These solvers are coupled together within the adaptive mesh refinement infrastructure using
Chombo library. The adaptive mesh refinement scheme employs an automatic, dynamic regridding
strategy based on an underlying rectangular discretization of the spatial domain (Berger & Oliger
1984, Berger & Colella 1989; Bell et al. 1994, Colella et al. 2000). The overall algorithm conserves
total energy, mass, and momentum.

B. Scalability Tests & Timings
To characterize the scalability of the ORION2 code, we ran a multiple blast wave test

problem including MHD, self-gravity, and diffuse radiation on a single level of refinement for 10
coarse timesteps. For the 8 CPU version, we tiled a 1283 domain with 8 643 grids, each containing
identical blast waves. As we increased the number of CPUs, we expanded the domain with
additional grids such that the total work per CPU remained constant. We measured the total time
spent in different physics updates on the Stampede platform timers provided by Chombo. The
CPU time per cell advance is shown for each module in Table 1. The results demonstrate excellent
algorithmic scalability of the hyperbolic portion of the code to at least 4096 processor cores.
The radiation module causes the greatest performance bottleneck owing to high communication
overhead, but it too shows reasonable performance on up to 4096 processor cores.

Table 1: Stampede ORION2 code scaling test in µs.

NCPU tMHD tgravity tradiation ttotal MHD eff Gravity eff Radiation eff Overall eff

8 5.53 7.94 11.33 24.8 1 1 1 1

64 5.57 8.41 12.66 26.64 0.99 0.94 0.89 0.93

512 5.87 9.54 15.14 30.56 0.94 0.83 0.75 0.81

1024 6.03 9.74 16.56 32.32 0.92 0.82 0.68 0.77

2048 6.18 11.70 20.83 38.71 0.9 0.68 0.54 0.64

4096 6.10 14.33 28.00 48.43 0.91 0.55 0.4 0.51

Next, we took one of our previous high mass models and timed the gravity, radiation, and
MHD update times. On 256 processors, the CPU time per cell advance for the MHD, gravity and
radiation modules were 43, 31, and 230 µs respectively. These results demonstrate that the actual
cost of a cell update in a realistic problem may be substantially higher than those of our idealized
estimate presented above. As a result, we use our realistic estimates when determining timing
analysis (see below). We furthermore note that the benchmark timing results for the MHD module
are typically about twice that of the purely hydrodynamic timings. We will therefore estimate
that realistic applications with hydrodynamics only will require half the cell cycle time, or 22 µs.

Ray tracing is an inherently difficult problem to parallelize: in star formation problems,
sources are typically clustered together and thus located on a small fraction of the processors.
These processors begin the ray trace, but all other processors sit idle until rays advance into their
domain. Load balancing and interprocessor communication ultimately become the limiting factors
for all ray tracing implementations. Our implementation of asynchronous communication and load
balancing have helped address these issues.

– 3 –

For weak and strong scaling studies, we used a highly simplified star formation model that
is reminiscent of our actual calculations utilizing direct radiation and photoionization. This
calculation resembles that done in Krumholz et al. (2006). We embed a radiating source at
the center of a (1 parsec)3 box with a constant neutral gas density (= 104 cm−3). The parameters
that dictate how often rays divide is set to ensure that each cell is impacted by ∼ 4 rays, which we
find is required to achieve the appropriate accuracy in our radiation tests. Only the ray tracing
module is used during the simulation. For these tests, the rays interact with the cells they cross
but do not change the state of the cell. We artificially truncate the rays once they travel a certain
distance, allowing each ray trace to be nearly identical for timing estimates.

For weak scaling tests, we find that communication begins to dominate the runtime, increasing
the overall wall-clock time, at and above 128 processors. At this point each processor is stalled
because it must send and receive rays to and from a considerable number of other processors. Since
each processor has an identical workload, our asynchronous communication and load balancing
improvements will not address this issue. However, our star formation problems will not exhibit
this sort of load balancing for ray tracing, and thus weak scaling tests are not appropriate for our
problems. We instead use the strong scaling results for our timing estimates.

For the strong scaling tests, we use a single source in a (1 parsec)3 domain on a 2563 grid.
This grid is spread across a varying number of processors p = 2n (n = 6, 7, 8). The radial extent of
the rays is set to either 0.1 pc, 0.2 pc, or 0.4 pc. These numbers are representative of typical star
formation problems, where, in the case of ionization, the ionized regions surrounding the stars will
constitute a small volume compared to the entire simulation domain.

To estimate the total CPU time for ray tracing, we’ve devised a formula that calculates the
CPU time required for a single ray trace per cell as a function of the number of processors and the
number of cells in the simulation that interact with the rays Ic. The latter accounts for how far
rays travel when cast. Optically thick gas will halt the rays, while rays traveling through tenuous
or ionized gas could travel far from their source. Our tests give us a two-dimensional grid of data,
and a least-squares fit is made to the formula

r(p, Ic) ≡
[

CPU time
per ray trace per cell

]
= A ·

(
p

256

)B
·
(

Ic
100, 000

)C
, (1)

yielding A = 15 µs, B = 0.2, and C = 0.7.
The complete menu of physics modules includes hydrodynamics, magnetohydrodynamics,

self-gravity, radiation diffusion, and photoionization. The cell update times for the first four
physics modules required in realistic problems are summarized in table 2, with photoionization
given by Equation (??). We again note that the radiation diffusion and gravity steps are implicit
operators that require more iterations for convergence in problems where these processes dominate
the flow dynamics. In practice problems including high mass source M > 15M� require twice the
radiation diffusion time of problems including only low mass sources. The time and that the cell
update times reported in the table will be multiplied by the typical number of iterations required
in similar scoping calculations.

C. Optimizations
Our code realizes great cost and memory efficiency by concentrating computational effort

only where the flow demands it. In contrast to more conventional hydrodynamics and MHD codes,
which use static uniform or graded grids, static nested grids, or a fixed number of hydrodynamic
particles (SPH), AMR actively assesses the solution with respect to user-specified refinement
criteria in order to guide the dynamic insertion and removal of rectangular fine grid patches.
Dramatic speedups are found for 3-D AMR gravitational hydrodynamic calculations – indeed,

– 4 –

Table 2: Stampede cell update time for typical applications (µs).

Code Module Cell Update Time

Hydrodynamics 22

Magnetohydrodynamics 43

Gravity 31

High Mass Star Radiation 230

Low Mass Star Radiation 115

with maximum refinements in linear extent in excess of order 104 − 105 being not uncommon,
a fixed grid code would require of order 1012 − 1015 cells throughout the entire duration of the
simulation to cover the same region, where on such a calculation we typically use of order 106−
several 107 cells, and even then, only after high-density structures have developed (Truelove et
al. 1997).

In general, there are two bottlenecks to the implementation of parallel algorithms:
communications costs and load balancing. Grids are distributed to processors in a round-robin
fashion to do computation. Chombo uses the message passing interface (MPI) to handle
all low-level parallelism aspects (data distribution, communication, etc.), while hiding the
infrastructure complications from developers building physics solvers and from scientist end-users
doing computations. While the elliptic and parabolic gravity and radiative diffusion solvers have
higher communications overhead than hyperbolic solvers, with the most recent version of the
Hypre library designed by Brown et al. (2000), it is now possible to achieve good scalability to
at least 4096 processors. Efficient load balance also presents a challenging obstacle, due to the
relatively broad distribution of grid sizes (which typically range from 5000 cells to 2.5 · 105 cells)
which the AMR algorithm generates in order to minimize computation. However, as Rendleman
et al. (1998) point out, it is possible to achieve very good load balance as long as there are many
more grids than processors.

D. General Timing Analysis
We estimate the runtime trun, for any run on a single processor, simply as the product of the

average cpu-time to advance a cell times the total number of cell advances :

trun =
seconds

cell cycle
×N coarse

adv + r(1, Ic)× (total number of ray traces)× (total number of cells) , (2)

where N coarse
adv is the total number of cell advances over all levels per coarse timestep. If ray tracing

is not included, the second term is omitted.
The number of coarse cycles required is simply the ratio of the total run time to the timestep

on the coarsest level. The former is the characteristic timescale for the problem, which is the
free-fall time for any collapse calculation in the absence of stellar winds. This is given by

tff =

√
3π

32Gρedge
=

.54√
Gρedge

, (3)

where ρedge is the smallest density at any point in the collapsing cloud. The coarse time step is
determined by the Courant condition:

∆tcoarse = C
∆xcoarse

max(v) + cs
. (4)

– 5 –

Here C is the Courant number (typically 0.5), max(v) is the largest 1-D velocity in the problem
domain, and cs is the sound speed.

The total number of cell advances over all levels for each coarse time step in an AMR
calculation is determined by the distribution of adaptive grids. If there are Nk cells on level k (k
= 0 .. kmax), with level k a factor f (typically 2) more refined than level k− 1, and kmax + 1 levels
in total, then we may write

N coarse
adv = N0(1 + fN1/N0 + f2N2/N0 + f3N3/N0 + ...) = N0

kmax∑
k=0

fk(Nk/N0) ≡ χN0. (5)

Note the dimensionless factor χ in the above expression has a simple interpretation : it is how
much longer all levels of an adaptive mesh refinement calculation take, per timestep, over a fixed
grid calculation with base level 0 resolution. χ may be explicitly computed given an estimation of
the number of refined cells on each level k > 0 and the base grid level k = 0 as

χ =

kmax∑
k=0

2kNk/N0. (6)

To accurately couple with our diffuse radiation modules, it is necessary to call ray tracing
on every AMR level. Comparatively, the timing of ray tracing on the finest AMR level greatly
exceeds the time spent on the coarser levels, and therefore we estimate the total ray tracing time
to be equal to the time spent tracing rays on the finest AMR level. The number of ray traces is
estimated as the ratio of the total run time to the typical ray trace time step ∆tion on this fine
level. For the latter, this time step is equal to (and never greater than) the time step on the finest
AMR level when ionization is not included. With ionization, sub-cycling is possible, since our ray
tracing routine sets the ionization time step by limiting the ionization front from moving through
a cell in less than ten ray traces. This timescale can be estimated by the ionization timescale for
the predominately neutral cells at the front:

∆tion =
ntot

nHσH

4πr2eτ

S
=

4πr2eτ

σHS
= 1.9× 106eτ

(
r

3× 1018 cm

)2(S

1049 sec−1

)
. (7)

where r is the characteristic size of the ionized region around the source, S is the number flux
of ionizing photons from the source, and τ ≈ 9.4 × 10−5 · nH · (r/AU) is the optical depth of the
zones between the source and first neutral zone at the edge of the ionization front. Here nH is
measured in units of cm−3. For highly dense regions near the star, eτ can be substantial even
when the neutral fraction is as low as ∼ 10−3.

For a single CPU we therefore have

trun =
seconds

cell cycle
× tff

∆tcoarse
× χN0 + r(1, Ic)×

tff
∆tion

× χN0 . (8)

If ray tracing is not included, the second term is omitted. If we run in parallel on p processors,
with a speedup factor s(p), the wall clock time needed is

trun =
seconds

cell cycle
× tff

∆tcoarse
× χN0

p s(p)
+ r(p, Ic)×

tff
p∆tion

× χN0 , (9)

and the total CPU time required is tCPU = ptrun. In general, due to scalar overhead and finite
problem size, the performance of the code will be less than optimal, and so s(p) < 1. By definition,
r(p, Ic) incorporates the ray trace’s scaling efficiency.

