
BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

BlackBox Component Builder

For Scientists and Engineers

Scientific programming without a sting.

To be presented at LLE in February 2004

Wojtek Skulski

Laboratory for Laser Energetics
University of Rochester

Rochester New York 14623-1299

skulski _at_ pas . rochester . edu

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

• Why BlackBox / Component Pascal ?

• How is a BlackBox application different from a classic "program”?

• How to establish a good structure from start?

• I have a DLL. How do I interface it with BB?

• How to make a powerful GUI without ever bothering about one?

• How to use waveform graphics BlackBox/Gr?

• How to use the Graphics and Scientific Library Lib (graphics, matrices,

vectors, special functions, digital filters, etc.)

• What is available from the web: graphics, utilities, etc.

• Which textbooks are good to read?

Main points of this presentation

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

• I want to achieve some goal, e.g., turn on an LED.

• I write a piece of software and push the GUI button.

• What can happen next:

1. The intended LED lights up. Hurrah!

2. Another LED lights up. Oops.

3. Internal application error?!

The application disappears from the screen.

Ad. 2. I should correct my algorithmic mistakes.

Ad. 3. This should never happen! But it often does.

Let it never happen again to us!

A common problem

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

A catastrophic failure (“crash”) may or may not be acceptable.

1. A grad student wrote an analysis program that dumps core on wrong data.

� Acceptable, if it does not delay his thesis (and his adviser’s papers).

2. The student’s SW is used to collect data. The DAQ is crashing every hour.

� Annoying, but acceptable, if collected data is still adequate to write papers.

3. Navigation SW crashed during descent. The spacecraft smashed onto the Moon.

� The entire lunar mission failed, hundreds M$ lost.

Programming techniques that are acceptable for either #1 or #2, are

not acceptable if the situation resembles #3.

Is it acceptable to crash?

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Download BlackBox from the website http://www.oberon.ch/blackbox.html

After downloading and unzipping the files, follow the installation instructions.

The solution: BlackBox Component Builder (free!)

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Subscribe to BlackBox Users mailing listBlackBox _at_ oberon.ch(replace _at_ with @)

Choose BlackBox software from Component Pascal Collection http://www.zinnamturm.de/

BlackBox User Community: scientists, engineers, programmers

CPC is an impressive collection of BlackBox
software maintained by Helmut Zinn.
• Scientific graphics, math, vectors/matrices.
• Programming aids.
• Productivity tools and utilities.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

1. Download and install BlackBox from http://www.oberon.ch/blackbox.html

Hint: for convenience use directory C:\Blackbox for installation.

2. Download and install Gr and POM from

http://www.pas.rochester.edu/~skulski/Downloads.html

Installation is simple: unpack the ZIP archives into C:\BlackBox created in step 1.

3. Start BlackBox, find menu item Pom, and begin exploration by reading POM manuals.

One way to get started with BlackBox: by example

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

J. S. Warford Computing Fundamentals
The Theory and Practice of Software Design with BlackBox Component Builder
Vieweg 2002, ISBN 3-528-05828-5, http://www.vieweg.de

N. Wirth and M. ReiserProgramming in Oberon - Steps Beyond Pascal and Modula

Addison-Wesley, 1992, ISBN 0-201-56543-9

Excellent tutorial for the Oberon programming language and language reference.

H. MössenböckObject-Oriented Programming in Oberon-2
Springer, 1995, ISBN 3-540-60062-0

Principles and applications of object-oriented programming with examples in Oberon-2.

C. SzyperskiComponent Software
Addison-Wesley 2002, 2nd edition, ISBN 0201745720

N. Wirth and J. GutknechtProject Oberon - The Design of an Operating System and
Compiler
Addison-Wesley, 1992, ISBN 0-201-54428-8

See also links at http://www.oberon.ethz.ch

Literature: Component Pascal and Oberon-2

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

The Method

Clear structure

Safe programming

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Programs crash because of internal errors.

Internal errors can be avoided with safe programming.

Safe programming has to be enforced rather than recommended.

Communication and structure.

The goal of a program is communication with other people.

Communication needs structure.

Structure has to be enforced rather than recommended.

The only reliable policeman is the compiler.

Optional tools may not be used (because of “lack of time”).

Prerequisites to develop trustworthy software

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Programs crash because of internal errors.

• Array indices out of bounds � segmentation violation.

• Pointer arithmetic errors � segmentation violation.

• Dangling pointers � segmentation violation.

• Unguarded typecasts � segmentation violation.

• Memory leaks � running out of memory.

All the above can, and have been, eliminated from modern languages:

Oberon, Component Pascal, Java, and C#.

The reliable way to avoid internal errors is to use one of the above,

and to avoid Fortran, C, or C++.

Internal errors are avoidable

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Large programs are maintainable if they have structure

Programs and projects often fall apart because of uncontrollable

growth of their size and deterioration of their structure.

Even a small program can be impossible to maintain if its structure

is a mess.

Structure is meant for humans who develop and maintain programs.

Hierarchical structure is human-oriented.

Books � subsystems.

Chapters � modules.

Paragraphs � procedures and data structures.

Sentences � programming statements and variables.

Good programming language should encourage hierarchical structure.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Component Pascal is both safe and supports structure

Component Pascal (C.P.) is one of few modern programming

languages that eliminated sources of common internal errors.

Array bounds are checked.

Memory management is automatic (“garbage collection”).

Typecasts are always guarded. (Never crash the runtime system.)

Types checked during compilation (“strongly typed language”).

Other “safe languages” include Oberon, Java, and C#.

C.P. has been extensively used in mission-critical applications

(including the one at LLE) and it does fulfill the promise.

In addition, C.P. development is efficient, code performance is

known to be very good, and it directly supports hierarchical structure.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Where does it come from?

40+ years of development and refinement

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Component Pascal: historical perspective

• How an electrical engineerchanged the computer science.

• Electrical engineers know that circuits should not burn or explode.

• Computer scientists assumed that if SW explodes, they can reboot.

• An electrical engineer said “stop the madness”. His name: Prof. Niklaus Wirth.

•1960. Algol: designed by a committee with N.Wirth participation.

• 1968-1970. Pascal: data structures, pointers, block structure, recursion.

• 1977-1979. Modula-2: modules, interfaces, information hiding, separate

compilation. Program development in teams, software engineering.

• 1986-1988. Oberon: type extensibility, inheritance, object-orientation.

• 1992. Oberon-2: type-bound procedures (methods).

• 1997. Component Pascal. Industrial implementation of Oberon-2.

BlackBox = Component Pascal + framework + operating environment.

BlackBox = over 40 years of experience and refinement.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

BlackBox: historical perspective

• BlackBox is an operating environmentthat originated as an operating system.

• 1985-1989. Oberon System: an operating system developed by Wirth and Gutknecht.

• Ran on 1-MIPS, 32-bit engineering workstation also designed by Wirth et al.

• Text, graphics, networking, e-mail, compiler, and run-time in 12k lines of code.

• 1989-1992. Oberon System ported to DOS, Windows, MacOS, several Unices.

• Ported versions ran under respective OS’s, but had original look-and-feel.

• Full portability of source code between all ports.

• Develop anywhere, run anywherehas been achieved and demonstrated long before Java.

• 1992-…. Oberon System-3 for Windows, Linux, Solaris, and bare hardware (Intel).

• This system is now known as BlueBottle. See www.oberon.ethz.chfor the latest details.

• 1992. Oberon System commercialized under the name Oberon/F (Windows, Mac).

• 1997. Oberon/F renamed to Component Pascal and BlackBox.

• A complete package: editor, compiler, debugger, loader, and runtime kernel.

• Hosted under Windows, with Windows look-and-feel.

• Over the years, users developed math packages, graphics, and applications.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Predicting the future of computing

• Predictions are difficult, especially if they concern the future (Winston Churchill).

• Industry has realized that the current state of software is worrisome.

• Lack of robustness is caused by languages such as FORTRAN, C, or C++.

• Tried Java to address the problem.

Java was modeled after Oberon.

But Java runtime system had poor performance.

• Finally, Microsoft hired one of chief BlackBox developers to design .NET.

• .NET will incorporate lessons learned by the N.Wirth school over 40+ years.

• Transition from Windows to new technology will be as long and gradual as

transition from DOS to Windows. All the foundations need be reworked.

• Eventually, C++ will be discarded (or reworked and renamed to C+#?&).

• We do not have to be at the bleeding edge. We have a solution right now.

• BlackBox robustness has been proven more than once.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Why is BlackBox good
for scientific and engineering

applications?

Math libraries

Graphics

Interfacing with hardware

Efficient code

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Features that are needed for scientific an engineering apps

Simple yet powerful programming language.

Iron-clad runtime system.

Instantaneous compile/load/debug cycle.

Comprehensive math libraries by Robert Campbell (BAE Systems).

Comprehensive graphics.
Scientific 1D, 2D, and 3D plotting by Robert Campbell, BAE Systems.

Interface to OpenGL.

Waveform graphics by Wojtek Skulski, University of Rochester.

Easy to interface with hardware (via hardware-specific DLLs).

Excellent support from the vendor.

Knowledgeable user community, quick response to questions.

Free. Source released at the end of 2004.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Let’s have a look at some BlackBox applications

• We can assess the strength of the tool and the community by looking

at a few examples.

☺ BUGS (Bayesian inference Using Gibbs Sampling).

Large cooperative project led by Imperial College School of Medicine and University of

Helsinki with over 15 years of development. Application area: Markov chain Monte Carlo

applied to pharmacokinetic models and epidemiological studies.

Search Google for “WinBUGS” and explore the websites.

☺ Russian Academy of Sciences: Theoretical calculations for High Energy Physics.

☺ BAE Systems: Antenna modeling for airborne radar systems.

☺ Oberon Microsystems: Monitoring software for a hydro power station.

Latter three described at www.cern.ch/Oberon.Day � Presentations

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Cartoon view of BlackBox

GUI

• Data acquisition
• Calculations
• Consistency checks
• Bit manipulation
• Graphics display
• more …

Just what we need: a reasonable GUI supported by a strong engine

Water

Air

Hardware
Other computers

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Cartoon view of C/C++

GUI

• Data acquisition
• Calculations
• Consistency checks
• Bit manipulation
• Graphics display
• more …

GUI supported by a strong engine that is ready to explode

Water

Air

Memory leak
Dangling pointer

Hardware
Other computers

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

BlackBox architecture

Client/server

Dynamic loading on-demand

Subsystems, modules, components

(direct support for hierarchical structure)

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Subsystems, modules, components, objects

• Modules: units of compilation.

• Also units of information hiding, and units being loaded to memory.

• Physically, a module is usually a single file.

• Subsystems: units of development.

• A subsystem is a collection of logically related modules.

• A subsystem occupies its own directory tree.

• Components: units of deployment.

• A component is a collection of modules or subsystems that you distribute.

• A component is not a finished application. It is rather a partto be re-used.

• Objects: a programming concept.

• An object is a data structure + related procedures (methods).

• Objects do not take a center stage.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

• Server defines and exportsits services using a prescribed syntax.

• Client importsand makes use of the services.
• The compiler enforcesconsistency between the server and the client.

• The programmer cannot defeat the interfaces.

Server module(s)
Define and export services.

Client module #1
Imports and uses the services.

BlackBox has client/server architecture

• Servers: Lower-level modules define and implement certain services.
• Clients: Higher-level modules make use of the services.
• Client/server relation is uni-directional (i.e., non-recursive).

Client module #2
Imports and uses the services.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

• Related modules are grouped into subsystems.

• Subsystems live in their separate directory trees.

• Subsystems help better organize SW projects.

• Subsystems impose useful bookkeeping structure.

Modules are grouped into subsystems

Module Module Module Module

Module Module

Module

Module Module

Subsystem A Subsystem B

Lower-level

subsystem C

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Subsystems help better organize complex projects

Subsystem Pico
Talks to PicoMotors

User-defined subsystem

Low-level subsystems
Files, Services, Fonts, …

Provided by BlackBox vendor.

Subsystem Lib
Math and graphics library.

Developed by a user and released
to public domain with source.

WinApi.DLL
Windows DLL.

Provided by Microsoft.

Ldcnlib.DLL
Communication DLL.

Provided by New Focus.

Higher-level subsystems for doing math, graphics, etc.
There is no difference between subsystems provided by BlackBox vendor and those you develop.

Internally almost every sub-system is divided into several modules.

GUI panels and pull-down menus
The GUI panels or menus do not contain any code.

Several different panels can be put on top of the same software.
Applications can be customized without rewriting the code.

E.g., end-user view and developer view only differ by the GUI. The code stays the same.

Legend:
Server � client.
Yellow: written in Component Pascal.
Grey: native operating system (Windows).
Blue: supplied by hardware vendors.

One of many DLLs

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Modules are dynamically loaded on demand

BlackBox Text
subsystem

My own
subsystem

Engineering
subsystem
(by R.Campbell)

All modules are equal under BlackBox (in particular, core BB modules).

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Extensibility on the fly

• All BlackBox components are dynamically loaded on demand.

• Exception: the lowest level BB kernel and loader stay locked in memory.

• On-the-fly development cycle.

• Load – test – unload from memory.

• Redesign – modify source – recompile – load and test again.

• The cycle can be repeated many times.

• Compilation is instantaneous (fraction of a second for a fairly large module).

• Loading/unloading is instantaneous.

• All the interfaces are checked for consistency during compilation.

• The interface “fingerprints” are tested for consistency during loading.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

• This subsystem connects to HW.

• We always talk to HW via vendor-supplied

Dynamically Loaded Libraries (DLLs).

Typical structure of a low-level subsystem that talks to HW

Acquire
Close
Initialize
etc…

• DemoPlot is used to develop the subsystem.

• Clients use the API exported by ImaqApi.

MODULE ImaqDll
Maps the DLL functions

to Pascal functions.
Contains no code of its own.

Imaq.DLL
Frame-grabber DLL

Provided by Nat’l Instr.

MODULE ImaqApi
Maps low-level functions
to high-level functions.

Implements a reasonable API.

MODULE DemoPlots
Exercises API during development.
Not used in the high-level system.

Client module(s)
use API services.

imgSnap
imgClose
etc…

imgSnap
imgClose
etc…

DemoImage
DemoTwin

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

• A typical math or simulation subsystem.

• This subsystem does not connect to HW.

Typical structure of an application subsystem

• This is a typical simple skeleton.

• Practical subsystems are usually more complex.

• Our LLE software is a bit more complex.

• Amazing functionality can be achieved this way.

Tool modules.
Developed for the project.

Main application module
Implements ADTs and/or

global structures and variables.

Command module
Handles GUI interactions.

Optional client module(s)
from other subsystems.

Lower-level modules.
Either self-developed
or provided by others.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Software should follow the application logic

Far Field
calculations

Near Field
calculations

Actuator
subsystem

Next slide shows close correspondence between our TGA hardware
and the architecture of our software. The correspondence is not
exactly one-to-one, but it is close.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Application structure resembles the structure of HW

MODULE TgcGeometry

Actuator coordinates

MODULE TgcFilters
Time-domain

signal averaging

Subsystem Lib
Math and graphics library

Public domain, with source.

MODULE TgcUnits
Near Field processing.

The diagram shows part of the structure of our LLE tiling software.

MODULE TgcTools
Math tools specific

to this project.

MODULE TgcFarFields
Far Field processing.

MODULE TgcCmd
Display commands.

Legend:
Server � client.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Elements of the C.P. language

C.P. is a modern programming language.

It supports all major programming styles:

procedural, structured, object-oriented,

modular, and component-oriented.

C.P. is as safe as Java, but more efficient.

Safety features: garbage collection, safe typecasts, assertions, array index checking.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Complexity of syntax of programming languages

S.Z.Sverdlov (University of Vologda, Russia)

Source: N.Wirth lecture during the Oberon Day at CERN, www.cern.ch/Oberon.Day

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Human-oriented structure is built into the C.P. language

The purpose of writing programs is communication.

Communication needs structure.

C.P. directly supports hierarchical structure.

Books � subsystems.

Chapters � modules.

Paragraphs � procedures and data structures.

Sentences � programming statements and variables.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

C.P. uses English as its mother tongue

C.P. is intentionally based on human language to aid communication.

BEGIN … END, IF .. THEN .. ELSE, etc.

Syntax of operators is intended to catch single-letter typing mistakes.

E.g., mistyping “=“ instead of “:=“ will be caught by the compiler.

Many subtleties (practiced over 40+ years) help write good programs.

E.g., operators OR and & have graphical form that suggests & being of higher

precedence than OR. This helps a human reader.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

REPEAT

INC (i);

ff := (i * ff + p + q) / (i * i - mu2);

c := c * d / i;

p := p / (i - mu);

q := q / (i + mu);

del := c * (ff + r * q);

sum := sum + del;

del1 := c * p - i * del;

sum1 := sum1 + del1

UNTIL (ABS (del) < (1. + ABS (sum)) * eps) OR

(i = maxIt);

C.P. arithmetic statements strongly resemble Fortran

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Modules encapsulate and organize

MODULETstExample4;  module Example1 from the subsystem Tst

IMPORT Math;  lower-level server module Math is used

VAR  global declarations start here
i * : INTEGER;  global read/write variable
j - : INTEGER;  global read-only variable
r : REAL;  global hidden variable (i.e., private)

PROCEDURE Tweak * ;  procedure Tweak is exported
BEGIN

r := Math.Sin (i * 3.14) ;  imported procedure Sin is used here
END Tweak;

PROCEDURE Sub ;  hidden procedure, note absence of * mark
BEGIN

j := i - 1 ;
END Sub;

END TstExample4.  compilation stops at the fullstop “.”

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Variables and assignments

Arithmetic variables can be assigned values, if it is safe to do so.

No loss of information � assignment operation is allowed.

Loss of information � explicit conversion must be made.

REAL := INTEGER is allowed.

INTEGER := REAL is allowed with explicit conversion .

Similar rules apply in case of data structures and pointers.

“Assignment compatibility” is enforced in order to avoid losing information.

Descriptive error makers are used by BlackBox, see next slide.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Variables and assignments

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Arrays and data structures

Multidimensional arrays of arbitrary elements.

Every array carries a hidden “tag” with range information. The run-time system

uses the “tag” information to perform index range checking.

arr1 = ARRAY 100 OF INTEGER;

arr2 = ARRAY 100, 100 OF REAL;

Data structures composed of arbitrary elements.

Every structure carries a hidden “tag” with type information. The run-time system

uses the “tag” information to enforce consistency of assignments.

struct1 = RECORD i: INTEGER; r: REAL END;

struct2 = RECORD a1: arr1; a2: arr2 END;

Both the arrays and data structures are “tagged” to enforce run-time consistency.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Pointers and memory management

Pointers and pointer arithmetic are the leading causes of catastrophic errors in unsafe

programming languages (C and C++). Consequently, pointers are implemented with

great care in C.P. Such restricted pointers are named “references” in other languages.

• Pointer arithmetic is not supported.

• Pointers to scalar variables are not supported.

• Only pointers to arrays or to data structures are supported*.

• Dynamically created variables cannot be de-allocated “by hand”.

• The run-time “garbage collector” maintains the dynamic memory pool.

aPtr = POINTER TO ARRAY 100 OF INTEGER;

sPtr = POINTER TO RECORD a1, a2: aPtr END;

NEW (sPtr); NEW (sPtr.a1); NEW (sPtr.a2);

*Arrays and structures are “tagged” in order to guard pointer safety.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Memory management and “garbage collection”

Dynamically created arrays and data structures cannot be de-allocated “by hand”.

The run-time “garbage collector” automatically maintains the dynamic memory pool.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Modules

Modules are the building blocks.

Modules fit to each other (like LEGO blocks).

Modules encapsulate their content:

variables, procedures, and data structures.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

• BlackBox is a collection of subsystems.

• Subsystems are built of modules.

• Modules fit to each other (like LEGO blocks).

• Modules encapsulate and organize their content:

variables, procedures, and data structures.

BlackBox is composed of modules

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

A simple module

MODULETstExample1;  module Example1 from the subsystem Tst

IMPORT StdLog;  lower-level server module StdLog is used

VAR i: INTEGER;  global hidden variable

PROCEDURE Add * ;  exported procedure
BEGIN

StdLog.String("Old i = ");
StdLog.Int(i); StdLog.Ln;
i := i + 1 ;
StdLog.String("New i = ");
StdLog.Int(i); StdLog.Ln;

END Add;

PROCEDURE Sub ;  hidden procedure, note absence of * mark
BEGIN

i := i - 1 ;
END Sub;

END TstExample1.  compilation stops at the fullstop “.”

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

The interface of the simple module

DEFINITION TstExample1;

PROCEDURE Add;

END TstExample1.

• The “definition” was created automatically by BlackBox.

• Non-exported entities are hidden, i.e., protected from access.

• Both “i” and “Sub” are hidden and therefore not accessible.

• “Information hiding” is the most important role of modules.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

A modified module

MODULETstExample1;  module Example1 from the subsystem Tst

IMPORT StdLog;  lower-level server module StdLog is used

VAR i * : INTEGER;  global variable “i” is now exported

PROCEDURE Add * ;  exported procedure
BEGIN

StdLog.String("Old i = ");
StdLog.Int(i); StdLog.Ln;
i := i + 1 ;
StdLog.String("New i = ");
StdLog.Int(i); StdLog.Ln;

END Add;

PROCEDURE Sub * ;  procedure Sub is now exported
BEGIN

i := i - 1 ;
END Sub;

END TstExample1.  compilation stops at the fullstop “.”

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

The interface of the modified module

DEFINITION TstExample1;

VAR
i: INTEGER;  global variable “i” is now exported

PROCEDURE Add;
PROCEDURE Sub;  procedure Sub is now exported

END TstExample1.

• During compilation the following message was shown in the Log console.

compiling "TstExample1"

Sub is new in symbol file

i is new in symbol file

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Interface defines the module’s services

• Every module has an “interface” that tells what services the module

is offering to other modules.

• The interface can be modified by either exporting what was hidden,

or hiding what was exported. After recompilation, the new interface

takes effect.

• After the interface was changed, all clients have to be recompiled.

• The “contract” between the server and the client is checked by the

compiler. The client cannot be compiled unless the contract is

fulfilled.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Where does the program execution start?

• Modules can have multiple entry points.

• Every entry point is as good as any other.

• Where is the function main in this system? Nowhere.

• Execution can start at any entry point.

• SW can be executed piece-wise.

• Great for step-wise development.

•Top-level modules are “servers to the user”.

Top-level modules do not have other modules as explicit clients. The

user can call the entry points of the top-level modules by clicking.

Therefore, top-level modules serve the user.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example of the execution trail

Add

Add

Add

Sub

Sub

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Objects and data structures

Data structures help organize heterogeneous data.

Objects = data structures + “methods”.

Objects do not take the center stage.

Objects are useful, but they are not holy cows.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

A few years ago, there was an “objectomania” among programmers.

To this day we hear that “everything should be written as classes in C++”.

Objects are useful, but should not become a gospel.

Component Pascal supports all major styles of modern programming.

Computational libraries are best written in classic procedural style.

Any Numerical Recipe can be immediately translated into C.P.

Complex applications need data structures, but not necessarily objects.

If a given hardware item has complex behaviors, then we may add “methods”.

An example: a camera can acquire data, hence Camera.Acquire.

A camera thus becomes an “object”.

Choose a programming style that suits your needs and your skill level.

Choose an appropriate programming style

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

A data structure

TYPE type of export: R/W, read-only, or none
Camera * = RECORD

chan * : INTEGER; (*frame grabber channel*)
err - : INTEGER; (*most recent error code*)
bufsize - : INTEGER; (*size of the buffer for image data*)
bufAdr - : INTEGER; (*address of the buffer*)
update * : BOOLEAN; (*do you want to update the screen?*)
iid, sid : INTEGER; (*interface and session ID, both hidden*)

END;

Heterogeneous data items are grouped into one convenient data structure that can

be manipulated as a whole. The name of such beast in C would be struct .

The markers * and - make the items exported (i.e., accessible for the clients) as

read/write, read-only, or not at all (if there is no marker).

N.B. This particular data structure is declared statically, i.e., it does not have to be

explicitly allocated by calling NEW.

This is named a “stack variable” in computer jargon.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

An object = data structure + methods

TYPE dynamically allocated
Unit * = POINTER TO RECORD

cam - : ImaqApi.Camera; (*previously defined data structure*)
showFringes * : BOOLEAN; (*a data item*)

(u: Unit) AcquireImage * ; procedures “bound to” this particular type
(u: Unit) InitDaq * ;
(u: Unit) InitDrift * ;

END;

A data structure that has procedures bound to it is termed object. The name of such

beast in C++ would be class .

The “data items” would be termed members in C++. Note that an entire data

structure Camera can also be a data item!

N.B. This particular data structure is declared dynamically, i.e., it has to be

explicitly allocated by calling NEW.

This is named a “heap variable” in computer jargon.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Gr waveform graphics*

Histogram and waveform display package.

Fairly easy to use.

Designed for data acquisition (DAQ).

Used several times for DAQ display.

DDC-1 and DDC-8 waveform digitizers, CAMAC, and student projects.

*Developed by W.S.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

When to use Gr (and when not)

When to use Gr:

• Integer-valued data, e.g., acquired from a digitizer (32-bit integers).

• One-dimensional data. E.g. temperature recordings, etc.

• The data is not an image (which would require 2D display).

• Real-valued math is not planned.

• The display has to be “live” and interactive.

• Convenient zooming and scaling is needed.

When to use Lib rather than Gr:

• Real-valued data (64-bit floating point numbers).

• Two-dimensional display (e.g., camera images).

• Lots of math, matrix algebra, or vector operations on data.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Gr has a reasonably good interactive GUI and is very easy to use.

A reasonably looking Gr plot can be obtained in less than a minute.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Gr/POM helps organize histograms into a tree structure.

Developed by an undergraduate student (with very little help)!

Graphical object management of Gr histograms

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Data Logger shows interferometer data histories

Data acquisition

panels

Displacement-measuring interferometer

history recordings

Data management

panel

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Gr was designed for data acquisition.

Several example panels and a tutorial

are provided with the Gr package.

Example data acquisition
panel.

Detailed instructions how
to use the Gr subsystem.

Gr User Guide

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

NIM pulser

Analog signal reconstruction: digital FIR filter output

Control &
waveform
display:
BlackBox
and Gr

DDC-8

DDC-x development system using BlackBox and Gr

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Scientific and engineering library Lib*

1D and 2D display package.

Matrix and vector calculus, digital filters, and special functions.

Designed for data analysis, theoretical calculations, and modeling.

Extensively used for mission-critical applications.

Airborne antenna systems (BAE Systems), adaptive optics (UofR Laser Lab).

*Developed by Robert Campbell, BAE Systems.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

When to use Lib libraries

When to use:
• Real-valued data (64-bit floating point numbers).

• Two-dimensional display (e.g., camera images).

• Lots of math, matrix algebra, or vector operations on data.

The list of subsystems:

Lib - Engineering & Scientific library, including 1D, 2D, and 3D plotting.

Algebra- Computational Algebra library.

Multi - Arbitrary ultra high precision arithmetic.

Filter - Digital and other filter design and analysis.

Nav - Navigation & Geodesic Coordinate transform modules and tools.

Wands- A collection of general purpose tools (Wand: a tool used by a magician).

Cpcand Ctls- several general-purpose tools and utilities.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Lib: math and plotting facilities

Vectors & Matrices, including 0-length cases.

Polynomial forms of vectors, matrix determinant, inverse, singular-value

decomposition, etc…

Complex numbers and complex functions.

Special Functions & curve fitting.

Random numbers:several r.n. generators.

Numerical methods.

Numerical integration, interpolation, root finding, and minimisation.

1D, 2D, and 3D plotting.

Includes interface to OpenGL.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Scientific plotting and computation library Lib

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Scientific plotting and computation library Lib

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

A mission-critical application using Lib

Adaptive optics control package, including hardware control.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Graphical User Interface

GUI without pain.

GUI can be automatically generated.

Before BlackBox, GUI design would take extensive effort.

Under BlackBox, GUI is not a problem anymore.

Work can focus solely on the algorithm.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

During development, command procedures can be called using “commanders”.

The developer’s “GUI without GUI”

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Automatic GUI builder

• It is well known that usually most development effort is burnt on developing GUIs.

• Not under BlackBox! GUI development has been slashed with the automatic builder.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Automatic GUI builder

You do not have to think of the GUI too much.

• Write your procedures, declare the variables...

• … focus on the algorithm.

• Then press the button and you will get the GUI.

Other SW builds the GUI code skeletonthat you have to fill in.

BlackBox does just the opposite.

• You write only the application code.

• GUI panelsare automatically built.

• GUI code does not even exist.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Graphical User Interface panels

• Under BlackBox, the GUI panels do not contain any code.

• GUI can be automatically generated using built-in “metaprogramming” facility.

• After being generated, GUI panels can be customized by hand to suit the planned use.

• Several different GUIs can be put on top of the same software.

• GUI can be customized without rewriting the code.

• End-user GO-NOGO panels can coexist with the “expert GUI”. The code stays the same.

• Module TgcCmd and the
auto-generated GUI displayed
side-by-side. The GUI can be now
rearranged by hand, some buttons can
be deleted, other buttons can be added,
and GUIs of other modules can be
mixed with this one.

• It usually takes a very short time
to design highly useful GUIs.

• All TGC panels have been created
this way.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Interfacing with hardware

All HW interfacing is handled via DLLs.

DLLs are called by BlackBox.

Several HW projects have been completed with BlackBox at UofR.

CAMAC, USB, video frame-grabber card, mechanical actuators,

distance-measuring interferometer (DMI).

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Steps in HW interfacing

• Collect information regarding your HW, example programs, and available DLLs.

• Read BlackBox Help --> Platform-Specific Issues.

• Install the DLL and its support software (if any) on your computer.

• Study example C programs and the .h files provided with the DLL.

• C naming conventions are somewhat standardized.

• int, short, or long are standard, but how about DLLENTRY(BOOL)?

• Such non-standard C names are #defined in the .h files provided by the DLL vendor.

• Write an interface module using “unmanaged” Pascal.

• Write an API module, a test module, and test GUI.

• Connect the HW and exercise the DLL using the test GUI.

• If you recompile the DLL interface module, you have to restart BlackBox.

• … or, use another instance of BB environment to test the DLL module.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

“Unmanaged” Pascal is used to interface with DLLs

• Windows DLLs usually have no safety whatsoever. The DLLs that interface with

HW are kernel mode driversthat can wreak havoc. Extreme care has to be used

when passing parameters to the DLLs.

• Safety of C/C++ cannot be increased � Pascal safety has to be decreased.

• “Unmanaged” Pascal is compatible with C. (And can crash just as easily as C.)

• Locally decreased safety is marked with the keyword SYSTEM.

• C-compatible arrays and data structures are marked with [untagged].

• C-compatible pointers are formed with SYSTEM.VAL and SYSTEM.ADR.

• C-compatible pointers and data structures should be confined to low-level code.

• Never make use of unmanaged variables in high-level Pascal code.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example: a complete subsystem

AcquireAll,
InitApparatus,
TestOneChannel,
etc…

MODULE OurDll
Maps the DLL functions

to Pascal functions.
Contains no code of its own.

Their.DLL
Talks to vendor hardware.
Provided by the vendor.

MODULE OurApi
Maps low-level functions
to high-level functions.

Implements a reasonable API.

MODULE OurTest
Exercises API during development.
Not used in the high-level system.

Our Data Logger
and other client module(s)

use API services.

OPT, READ,
SAMPLE,
etc…

Opt, Sample,
SetFormat,
etc…

GUI test panels
Exercises SW during development.
Not used in the high-level system.

Typically present,
but not in this project.

Simple panels
for testing.

Unsafe C code.

Unmanaged Pascal code
(as unsafe as C).

Unmanaged + managed
Pascal code.

Safe, managed
Pascal.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

DLL interface module (functionally equivalent to .h file)

The interface module establishes “mapping” between DLL and Pascal functions .

Our Pascal module name Their DLL name (without .DLL extension)

MODULE OurDll [“TheirDll"] ;

IMPORT SYSTEM; “SYSTEM” is the “unmanaging” keyword

(*This module can only contain DLL mappings, but no code.*)

(*It is functionally equivalent to a C header file, i.e., .h *)

END OurDll.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Entering the domain of unmanagedPascal code

The example OurAPI module contains both managed and unmanaged code.

MODULE OurApi ; “Unmanaging” keyword

IMPORT SYSTEM, OurDLL ; Lower-level DLL interface module (prev slide)

VAR Managed Pascal variables, public

errorFlag - : BOOLEAN;

msg * : ARRAY 128 OF CHAR

Unmanaged C-compatible variables

errBuf : OurDll.chrBufferType; (*C-buffer for DLL data*)

errPtr : OurDll.chrBufferTypePtr; (*C-pointer to the above*)

END OurApi.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example: mapping C-struct � Pascal

An arbitrary C-struct� corresponding unmanagedPascal.

typedef struct SingleDataOutput {
INT32 pos_data; // position
UINT32 time_data; // time
UINT32 vel_data; // velocity

} SingleDataOutput;

Suppress Pascal type-safe information
TYPE

SingleDataOutputType * = RECORD [untagged]

pos_data * : INTEGER;

tim_data * : INTEGER;

vel_data * : INTEGER

END;

Pascal export mark

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Examples: mapping C-arrays � Pascal

An arbitrary C-array � corresponding unmanagedPascal.

Like all unmanaged code, requires keyword SYSTEM.

CONST bufLen = 512;

(* C-compatible array of 8-bit chars, null-terminated. Has to be

allocated by the caller (either on stack or heap). *)

chrBufferType * = ARRAY [untagged] bufLen OF SHORTCHAR;
chrBufferTypePtr * = POINTER TO chrBufferType;

(* C-compatible array of 16-bit integers. Has to be allocated by the

caller (either on stack or heap). *)

int16BufferType * = ARRAY [untagged] bufLen OF SHORTINT;
int16BufferTypePtr * = POINTER TO int16BufferType;

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example: DLL-function uses C-array � Pascal

DLL function uses C-array � corresponding unmanagedPascal.

DLLENTRY(INT16) OPT (char * ret_str) // Original C-declaration

// Parameters of the DLL function:
// - char * ret_str
// - used to pass back some string
//
// Return INT16: - number of characters in ret_str

Corresponding unmanaged Pascal in OurDll

PROCEDURE Opt * [" OPT"] (* Mapping C�Pascal in OurDll *)
(

infoPtr : chrBufferTypePtr (* Declared on previous slide *)

): Int16; (* Return value, 16-bit *)

… continued on next slide

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Continued: DLL-function uses C-array � Pascal

Continued: how to call in Pascal the DLL function that uses C-array.

DLLENTRY(INT16) OPT (char * ret_str) // Original C-declaration

PROCEDURE Opt * [" OPT"] (* Mapping C�Pascal in OurDll*)
(infoPtr : chrBufferTypePtr (* Declared on previous slide *)
): Int16; (* Return value *)

PROCEDUREInitApparatus *; (* Calling Opt in OurApi*)
VAR

errBuf : OurDll.chrBufferType;
errPtr : OurDll.chrBufferTypePtr;

BEGIN
errPtr := SYSTEM.VAL(OurDll.chrBufferTypePtr, SYSTEM.ADR(errBuf));
nchar := OurDll.Opt (errPtr);

Note: the line with VAL and ADR is an unmanaged C-like typecast, which is as
dangerous as it would be in C.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Another example

Original C-declaration from TheirDll:

DLLENTRY(int) TheirInit(char *portname, unsigned int baudrate);

Mapping C � Pascal in the interface module OurDll:

TYPE PtrSTR = WinApi.PtrSTR; (* C-pointer to a string of char*)

PROCEDURE TheirInit * ["TheirInit"] (* Assigning name C � Pascal*)
(portname : PtrSTR; (* Null-terminated string*)
baudrate : INTEGER (* Parameter passed by value*)
): INTEGER; (* Return value, 32-bit *)

Calling the Pascal function TheirInit in user Pascal code:

numBoxes := OurDll.TheirInit("COM1", 19200);

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example: interfacing with WinAPI

A complete set of Windows system calls is provided with BlackBox.

PROCEDURE ExampleApiCall ( typical Pascal declaration
hDevice : HANDLE;  Windows 32-bit pointer
controlCode : INTEGER;  ctrl code, hex
buffer : PtrVoid;  buffer address
bufferSize : INTEGER  buffer size

): BOOL;

result := WinApi. ExampleApiCall ( calling in user code
hDevice,  Windows pointer
0220000H,  ctrl code, hex
SYSTEM.VAL (PtrVoid, SYSTEM.ADR (buf)),  buffer address
SIZE (bufType)  buffer size

);

… continues on the next slide

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example: interfacing with WinAPI, cont.

… continued. Suppress Pascal type-safe information

TYPE bufType = ARRAY [untagged] 100 OF BYTE;  C-compatible buffer
VAR buf : POINTER TO bufferType;

result := WinApi. ExampleApiCall ( example user call
hDevice,  Windows 32-bit pointer
0220000H,  ctrl code, hex
SYSTEM.VAL (PtrVoid, SYSTEM.ADR (buf)),  buffer address
SIZE (bufType)  buffer size

);

Use either SYSTEM.VAL (WinApi.PtrVoid, buf), if thebuf is a pointer to a heap

object, or SYSTEM.ADR(buf), if buf is a stack object (i.e., not a pointer).

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example: parallel port interfacing

PC parallel port is the simplest HW we can play with.

Collect information:

Parallel Port Completeby Jan Axelson and her website www.lvr.com

Choose the most promising DLL. Install it on your computer.

Based on the above, I chose Inpout32.DLL from www.logix4u.com

Try to understand example C programs. (See next slide.)

Disentangling the examples was easy in this case, but in general it takes a while.

Write an interface module, see next slide.

Connect the HW and exercise the DLL.

BlackBox for scientists and engineers. Wojtek Skulski Laboratory for Laser Energetics, University of Rochester, February 2004

Example: parallel port interface module

C example BB module

