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We studied how direct current flows in a circuit that has a resitance and
a capacitor. As we turn the circuit on, the current decreases to zero rapidly.
We will study a new kind of circuit where the current oscillates: it increases to
a positive value then decreases to a negative value and so on, back and forth
in time. These oscillators are the basis of many devices that we use every
day. The tuner in your TV or radio is an example, as are electronic watches. In
most modern devices, the oscillations are regulated using additional components
like transistors or crystals. We will study only the most basic example with
inductance, capacitance and a resistance.

1 Inductance
We saw that a coil carrying an alternating current can induce an electromotive
force on a nearby coil: ir can drive a current on it. This e.m.f. on the second
coil E2 is proportional to the derivative of the current on the first coil: if the
current is constant there is no induction. Thus

E2 = −M dI1
dt
.

This constant M is called the mutual inductance of the two coils. Using
Faraday’s law we can derive a formula for it

M = µA
N1N2

l

where A is the cross-sectional area the two coils share, l the length of the coils
and N1, N2 the number of turns on them. Also, µ is the magnetic permeability
of the material inside the coils .Of course, the second coil will induce an e.m.f.
on the first as well.

E1 = −M dI2
dt
.

Any time that magnetic flux across the area enclosed by a wire changes,
there will be an induced e.m.f. on it. Thus a varying current can induce an
e.m.f. even on the wire carrying it: this is called self-inductance. By Lens’z law,
the sign of this e.m.f. will be such that it opposes the change of the current. So
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E = −LdI
dt
.

The constant L, called self-inductance (shortened to inductance) has a for-
mula as well, derived from Faraday’s law

L = µA
N2

l
.

Again N is the number of turns in the coil, l its length and A the area.
To have a large inductance, the coil can be filled with a material with a large
magnetic permeability ( like iron). The unit of inductance is Henry. Clearly a
Henry is the same as Volts.(1/Amperes).secs.

1.1 An Example
A 3.81 m-long coil containing 225 loops is wound on an iron core (average
µ = 1850µ0) along with a second coil of 115 loops. The loops of each coil have
a radius of 1.00 cm. The mutual inductance is

M = µA
N1N2

l
= 1850× 4π × 10−7π(0.01)2

225× 115
3.81

= 4.96× 10−3H

The self inductance of the first coil is

L1 = µA
N2

1

l
= 1850× 4π × 10−7π(0.01)2

2252

3.81
= 9.7× 10−3H

while that of the second coil is

L2 == µA
N2

2

l
= 1850× 4π × 10−7π(0.01)2

1152

3.81
= 2.53× 10−3H.

2 An LC Circuit
Inductance represents the inertia of an electric current. The more the induc-
tance, the more it will oppose changes in the current. An inductor is happiest
(has no induced e.m.f.) when it has a constant current flowing through it.

A Capacitor on the other hand, is in a hurry to get rid of the electric charge
stored in it: it is happiest (has zero e.m.f.) when it carries no charge. By putting
an inductance and a capacitance together we can trick them into oscillating back
and forth between their states of maximum and minimum e.m.f. In any real
circuit, the wires carrying the current will have some resitance. But as a first
step we ignore this and consider an ideal circuit with only L and C. Also, as a
first step we assume there is no external e.m.f. applied: no battery or AC power
source.

The e.m.f. of the inductance and the capacitance must add up to zero
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−LdI
dt

+
Q

C
= 0.

But recall that current is the rate of discharge of the charge on the capacitor
Q :

I = −dQ
dt
.

Combining these we get

dI

dt
=

1
LC

Q

dQ

dt
= −I.

This pair of differential equations can be solved in terms of familiar functions.
What is a pair of functions so that the derivative of one is a constant times the
other? Recall that

d sin θ
dθ

= cos θ

d cos θ
dθ

= − sin θ

So for a constant ω,

d sinωt
dt

= ω cosωt

d cosωt
dt

= −ω sinωt

This looks a little more like what we want. If we put

Q(t) = Q0 cosωt

for some constant Q0( you can check that it is the value of the charge at
time t = 0), we will have

I = −dQ
dt

= ωQ0 sinωt.

Continuing with this

dI

dt
= ω2Q0 cosωt.
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In other words

dI

dt
= ω2Q.

This is what we want if we set

ω2 =
1
LC

or

ω =
1√
LC

.

Thus the charge and the current oscillate periodically in time. The period
is

T =
2π
ω

and the frequency is

f =
ω

2π
=

1
2π
√
LC

.

At time t = 0 the charge is at a maximum valueQ0. The capacitor discharges.
If there was no inductance, the charge would drop to zero very quickly. But
the inductance produces an e.m.f. that opposes the change in current. But this
causes the capacitor to overshoot and get itself charged in the opposite polarity.
It discharges again and overshoots itself so that it a charge of Q0again. Then
the whole process repeats itself.

It is like having two political parties. Party L always opposes whatever
change that Party Q is trying to make.

The country will go back and forth between extremes.

3 Mechanical Analogy
Imagine a mass attached to a spring. When the spring is not extended, the force
on the mass is zero: it is in equilibrium. If the mass is displaced by x from this
equilibrium point, there is a force −kx acting on it. The sign of the force is in
the direction that opposes the displacement. Thus

ma = −kx

where ais the acceleration. Recall that it is the rate of change of velocity,
which is itself the rate of change of position:

v =
dx

dt
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a =
dv

dt
.

Thus we have

v =
dx

dt

dv

dt
= − k

m
x

This is just like what we had above: the charge on the capacitor is like the
displacement. The current is like the velocity ( more precisely the negative of
the velocity). The inductance is like the mass and the reciprocal of capacitance
is like the spring constant k. This makes sense because inductance is a form of
inertia, according to Lenz’s law.

4 Energy in an Oscillator

The energy in a capacitor is Q2

2C .It is a form of potential energy. The energy in
an inductor is due to the current flowing through it. Thus it is a form of kinetic
energy, due to the motion of electrons. It can also be thought of as the energy
of the magnetic field inside the coils. This energy is 1

2LI
2. The sum of these

two is conserved in an ideal LC oscillator (with no resistance).

1
2
LI2 +

Q2

2C
= constant.

5 Adding Resistance
But in the real world we are always losing energy to heat: the wires that carry
the current will have resistance. The oscillations will die out eventually unless
this energy is replenished from external sources.

If we include the voltage drop across a resistor,

−LdI
dt

+
Q

C
−RI = 0.

In other words

L
dI

dt
+RI − Q

C
= 0.

and still
I = −dQ

dt
.
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For small R,there should still be an oscillation, but each cycle, the maximum
charge will be a little less than the one before. We can try a guess like

Q = Q0e
−γt cosω′t

which would capture this behavior. By putting it into the differential eqation
we will get

γ =
R

2L
,

and

ω′ =

√
1
LC
− R2

4L2
.

If the resistance is large (R > 2
√

L
C ) there are no oscillations: the charge

just decreases to zero exponentially.

6 Phase of Alternating Current
An alternating current is described its maximum current, its frequency and its
phase

I(t) = I0 sin[ωt+ φ].

Across the resistor the emf is proportional to the current. It reaches a
maximum when the current is a maximum.

RI = RI0 sin[ωt+ φ]

But across an inductor, the emf is

−LdI
dt

= −LI0ω cos[ωt+ φ] = (Lω)I0 sin[ωt+ φ− π

2
].

Thus in addition to multiplying the current by Lω, we must also shift the
phase of the current to get the emf: when the current is a maximum, the emf
of an inductance is actually zero.

A capacitance also shifts the phase but by the opposite amount. The emf
across a capacitor is Q

C ; and

I = −dQ
dt
.

Thus

Q =
1
ω
I0 cos[ωt+ φ]

and
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Q

C
=

1
ωC

I0 sin[ωt+ φ− π

2
].

A phasor (not the same as in Star Trek) is an electrical engineer’s trick
for representing these facts conveniently. A phasor is like a vector: it has a
magnitude and a direction. A resistor is represented by a phasor of length
R pointing along the horizontal axis. An inductance is a phasor of length Lω
pointed along the vertical axis and a capacitance a phasor or length 1

Cω vertically
downward from the origin. Phasors added just like vectors in the plane . Thus
an LCR cicruit will have a phasor represented by the sum of the components(

R,ωL− 1
ωC

)
.

The magnitude of this phasor is called impedance

Z =

√
R2 +

(
ωL− 1

ωC

)2

.

The direction is found by recalling that the resistance is the horizontal com-
ponent of a phasor of length Z

cos θ =
R

Z
.

The impedance relates the rms voltage of an AC circuit to its rms current:
there is something similar to Ohm’s law

Vrms = ZIrms.

7 Driven Oscillators
Because of resitance an oscillator will lose its current rapidly unless we give it
some external emf. If this external is itself periodic we have a driven oscillator.
It is similar to a person giving a swing a push at periodic intervals so that the
swing keeps oscillating. The frequency of this external emf does not have to be
the same as the natural frequency of the circuit.

If we apply an emf of angular frequency ω, the current in an LR circuit is
given by

Irms =
Vrms
Z

=
Vrms√

R2 +
(
ωL− 1

ωC

)2 .
Thus the current is a maximum when the frequency of the driving emf is

equal to the natural frequency of the circuit:

ωL =
1
ωC
⇒ ω =

1√
LC

.

This is the phenomenon of resonance.
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