Unit 6-4: Radiation in the Magnetic Dipole and Electric Quadrupole Approximations

In the long wavelength limit, the electric dipole radiation is the leading term and the higher terms are usually small
and may be ignored. However it might happen that, for a particular charge configuration, the electric dipole moment
vanishes, p, = 0. In this case it will be necessary to consider the magnetic dipole and electric quadrupole terms,
which are both of the same order.

Magnetic Dipole Radiation

The magnetic dipole contribution to the vector potential, in the long wavelength approximation, is,

ikr

Ay = er (i - ik) (—# x m,,) (6.4.1)

In the Radiation Zone approximation, kr > 1, this becomes,

ikr

Aug = — ik x m,, (6.4.2)

The magnetic field is,

By = V x Ay = (Veik7) x <2kr>;mw> + eV x (W) (6.4.3)

Taking the curl of the expression in the second term above gives terms of order 1/r%, and so these can be ignored in
the Radiation Zone.

With V e*" = jki e we therefore get,
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By = —k? £ x (f x my) in the Radiation Zone (6.4.4)
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Far from the source, where j = 0, Ampere’s law gives,

B = 1 V x Bay = ik (Vo) x (<m>> ke x (<m>> (6.4.5)

Taking the curl of the expression in the second term above gives terms of order 1/r2, and so these can be ignored in
the Radiation Zone.
ik k7 in the Radiation Zone we have,

So using V e'*" = ikfe
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Enn = k2 S # x (r X (F x mw)) (6.4.6)

Using A x (B x C) =B(A-C) — C(A - B) with C =t x m,,, we then get,
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Eyn = k2 [r(r (# x mw)) — (Fxmy)(F ) (6.4.7)
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Eyq = —k2 (f X my,) in the Radiation Zone (6.4.8)
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IF the dipole moment m,, is a real valued vector, then we can choose coordinates so that m,, = m,,z is aligned along
the z axis. Then we can write in spherical coordinates,
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The Poynting vector is,
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And the time averaged Poynting vector is,
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This is exactly the same form as we found previously for the electric dipole (Sg1) except with the replacement
Po — m,,. Therefore we have,
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The total radiated power is,
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The ratio of power emitted in magnetic dipole vs electric dipole radiation is,
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Electric Quadrupole Radiation

The electric quadrupole contribution to the vector potential, in the long wavelength approximation, is.

ikr 1 .
Apy = € ( _ Zk’) <_Mf- . aw> (6.4.16)
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In the Radiation Zone approximation, kr > 1, this becomes,

eikr ]C2 o

Agy = — 5 Q. using k = w/c (6.4.17)
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The magnetic field is,
K25 Q K25 Q
Bps =V x Apy = — (Ve'*7) x <‘”6TQ“’> — eV x (rGTQ“’) (6.4.18)

Taking the curl of the expression in the second term above gives terms of order 1/r2, and so these can be ignored in
the Radiation Zone.

With V e*" = iki e’ we therefore get,

ikr
Bpo = —ik? e6r T x (f' . aw) in the Radiation Zone (6.4.19)

Far from the source, where j = 0, Ampere’s law gives,

) R . <> N R <>
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Taking the curl of the expression in the second term above gives terms of order 1/r2, and so these can be ignored in
the Radiation Zone.

So using V e**" = jk#e'*"_ in the Radiation Zone we have,
3 eikr o
Epz = ik* T 1 (r (8- Qw)) in the Radiation Zone (6.4.21)
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The Poynting vector is,

Spga(r,t) = iRe [Ep2(r)e™™"] x Re [Bpa(r)e ™] (6.4.22)
IS 6 PRY pRs
- 753/&42 sin?(kr — wt) [r (B x (& - Qw))} x [r x (8- Qw)} (6.4.23)

where we have assumed that aw is real.
B
Let W=7t x (f-Q,). Then,
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Now,

Wi = [r x (i - aw)} #=0  since & L (f x U) for any U (6.4.25)
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Now, letting U = f‘oaw so that W = #x U, and using A-(BxC) = B-(CxA)and Ax (BxC) =B(A-C)—C(A-B),

we have,

[f«x (& x (f-aw))} x {f«x (f~(3w)] — F(W-W)= FFExU)-FxU)= 5 [Ux(EFExU)]  (6.4.26)

=—ff-F(U-U)-UU-#)]=-F[(U-U)—(F#-U)-(U-§)]=-[|JU* - |£-UP] £ (6.4.27)
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So finally,
Sp— &M 2(kr — t)[|f Q.2— - Q fﬂf (6.4.29)
B2 = e g sin(kr —w w w 4.
Taking the time average gives,
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and then the differential power cross-section is,
dPgy 2_cl<:6 - -G
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The angular dependence of dPgs/d2 depends on the specific form of aw.

Bg <> Eg
As an example, suppose &; - Q,, - &; = 0 except for &; - Q. - €3 = Q.., so that Q, = Q.. 22. This would be a model
for two equal, but oppositely oriented, oscillating electric dipoles.

Then,
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£p Cﬂ,ﬁh]t FQu=0Q..(F 2)z=0Q,,cos0z (6.4.32)
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and so,
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and, using sin 20 = 2 sin # cos 6, we finally have,
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The power distribution is as shown on the left. The distri-
0 — 270° 0 = 90° bution is rotationally symmetric about the Z axis. Most of
the powser is directed at £45° to the Z axis.

0 = 180°



The total radiated power is,

P
Py = / 0 ? ; 52 ~ k8Q2 ~ kS (qd?)? (6.4.38)

So the ratio of electric quadrupole power to electric dipole power is,
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~ (kd)? ~ (%)2 (6.4.39)

since kd = (w/c)d ~ (d/7)/c ~ (v/c). So Pra ~ Pa.

General Quardupole

<> <>
For the most general electric quadrupole case, since Q,, is symmetric, we can choose coordinate axes so that Q,, is

diagonal. Then, with ¥ = (sin 6 cos ¢, sin 0 sin p, cos §), we have,

Quz O

#FQuF=f| 0 Qp 0 | %= Qusin®0cos®y+Q,,sin®0sin®p+ Q.. cos0 (6.4.40)
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and

£ - (3w|2 = Q2 sin’fHcos® o + sz sin? @sin? p + Q2 cos? 0 (6.4.41)
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d52 = 4i5 [ 2 sin? 6 cos? ¢ + sz sin® @sin® ¢ + Q2 cos® (6.4.42)
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In general, if there are no special symmetries, dPgs/dS2 varies with both 6 and .

Discussion Question 6.4

Consider the radiation emitted by a thin circular wire loop of radius R, centered about the origin in the zy
plane at z = 0. The current flowing in the loop is given by

I(p,t) = Re [Iy cos(np)e™ ']

where ¢ is the usual azimuthal angle in spherical coordinates (i.e. the angle in the xy plane). The frequency
w is such that Rw < c.

What type of radiation (i.e. electric dipole, magnetic dipole, electric quadrupole, etc.) is emitted when
n=0,n=1and n = 2.

You should not need to do any analytic calculation, just think of how the charge in the wire loop is behaving
when the current is as specified. A well explained sketch should be sufficient to make your point.




