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Unit 4-4: Energy and Momentum of Electromagnetic Waves in a Vacuum

Electromagnetic Plane Waves in a Vacuum

In a vacuum, ρ = 0 and j = 0. The microscopic Maxwell equations become,

1) ∇ ·E = 0 3) ∇ ·B = 0

2) ∇×E = −1

c

∂B

∂t
4) ∇×B =

1

c

∂E

∂t

(4.4.1)

Taking the curl of (2) gives,

∇× (∇×E) = ∇(∇ ·E)−∇2E = −1

c

∂

∂t
(∇×B) (4.4.2)

Since ∇ ·E = 0 by (1), we get

−∇2E = −1

c

∂

∂t
(∇×B) = −1

c

∂

∂t

(
1

c

∂E

∂t

)
where we used Faraday’s law (4) in the last step (4.4.3)

So we have

∇2E− 1

c2
∂2E

∂t2
= 0 this is the homogeneous wave equation with wave speed c (4.4.4)

Similarly, taking the curl of (4), and then using (3) and (2) gives

∇2B− 1

c2
∂2B

∂t2
= 0 (4.4.5)

Note, in MKS units the above wave equation would be ∇2E− ε0µ0
∂2E

∂t2
= 0, and the speed of the wave is 1/

√
ε0µ0. It

was the observation that the numerical value of 1/
√
ε0µ0 = 3× 108m/s, as determined from the electromagnetically

measured constants ε0 and µ0, was the same as the speed of light c, as measured in optical experiments, that led to
the conclusion that light is an electromagnetic wave.

We consider a simple harmonic plane wave solution to the above wave equation, which has the form,

E(r, t) = Re
[
Ekei(k·r−ωt)

]
B(r, t) = Re

[
Bkei(k·r−ωt)

] (4.4.6)

Where “Re” means to take the real part of the complex valued expression. The physical fields E and B must always
be real valued quantities, however we will usually find it convenient to use this complex exponential form to describe
a plane wave. When we do that, we have to take the real part to get the physical fields. Often we will not bother to
write “Re”, but it will be understood as implied.

Here

k is the wavevector (k = |k| is the wave number)

ω is the angular frequency (or, for short, just the frequency)

ν = ω/2π is the frequency

T = 1/ν is the period

λ = 2π/|k| is the wavelength

|Ek|, |Bk| are the amplitudes

(4.4.7)
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The fields are periodic in space in direction k̂, with a period λ, and they are periodic in time with a period T ,

E(r + λk̂, t) = E(r, t) E(r, t+ T ) = E(r, t) (4.4.8)

The form above is called a plane wave because E(r, t) is constant in space on planes with normal n̂‖k. This follows
because if r⊥ is a displacement perpendicular to k, then r⊥ · k = 0, and so E(r + r⊥, t) = E(r, t).

Properties of EM Plane Waves

The plane wave forms of Eq. (4.4.6) must solve Maxwell’s equations. Requiring them to do so will give us the relations
between the amplitudes Ek, Bk, the wavevector k and the frequency ω.

Using ∇ · [Ekf(r)] = Ek ·∇f(r) for a constant Ek, we have from (1),

∇ ·E = 0 ⇒ Re
[
Ek ·∇ei(k·r−ωt)

]
= Re

[
iEk · k ei(k·r−ωt)

]
= 0 ⇒ Ek · k = 0 (4.4.9)

So the amplitude Ek is perpendicular to the wavevector k. Similarly, we have from (3),

∇ ·B = 0 ⇒ Bk · k = 0 (4.4.10)

and the amplitude Bk is also perpendicular to the wavevector k.

Now we use Ampere’s law (4), and ∇× [Bkf(r)] = −Bk ×∇f(r) for constant Bk, to get,

∇×B− 1

c

∂E

∂t
= 0 (4.4.11)

⇒ Re

[
∇×Bk ei(k·r−ωt) − 1

c
Ek

∂

∂t
ei(k·r−ωt)

]
= 0 (4.4.12)

⇒ Re

[
−Bk ×∇ei(k·r−ωt) +

iω

c
Ek ei(k·r−ωt)

]
= 0 (4.4.13)

⇒ Re

[
ik×Bk ei(k·r−ωt) +

iω

c
Ek ei(k·r−ωt)

]
= 0 (4.4.14)

⇒ k×Bk +
ω

c
Ek = 0 ⇒ k× (k×Bk) +

ω

c
k×Ek = 0 (4.4.15)

Now since k ⊥ Bk, then each k× rotates Bk by 90◦, and so k× (k×Bk) = −k2Bk. We thus get

−k2Bk = −ω
c

k×Ek ⇒ Bk =
ω

ck2
k×Ek =

ω

ck
k̂×Ek (4.4.16)

Finally, from Eq. (4.4.4) we have

∇2E− 1

c2
∂2E

∂t2
= 0 (4.4.17)

⇒ Re

[
Ek∇2ei(k·r−ωt) − 1

c2
Ek

∂2

∂t2
ei(k·r−ωt)

]
= 0 (4.4.18)

⇒ Re

[
Ek(−k2)ei(k·r−ωt) +

ω2

c2
Ekei(k·r−ωt)

]
= 0 (4.4.19)

⇒ k2 =
ω2

c2
(4.4.20)
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So, we get the dispersion relation for our EM plane waves,

ω = ±ck (4.4.21)

Using this last result in Eq. (4.4.16) we then get,

Bk = ±k̂×Ek so |Bk| = |Ek| (4.4.22)

and the amplitudes of the electric and magnetic parts of the wave are equal.

By our definition, k = |k| is always positive. If we take the (+) sign in Eq. (4.4.21), then ω is positive and the
wave travels in the direction of k. If we take the (−) sign in Eq. (4.4.21), then ω is negative and the wave travels in
the direction −k. We can see this as follows. Take k = kẑ. Then for E = Re[Ekei(kz−ωt)] = Ek cos(kz − ωt), the
maximum of the wave will be where the cosine is maximum, i.e., when kz − ωt = 0 ⇒ z = (ω/k)t. So when
ω > 0, the peak in the wave travels with speed c = ω/k in the +ẑ direction, i.e., in the direction of k. When ω < 0,
the peak in the wave travels with speed c = |ω|/k in the −ẑ direction, i.e., in the direction −k.

If we take k̃ to have magnitude k and point in the direction of the wave propagation (so k̃ = k if ω > 0, and k̃ = −k
if ω < 0), the (±) sign in Eq. (4.4.22) ensures that k̃, Ek, and Bk form a right handed coordinate system.

In the rest of these notes, whenever we are dealing with a simple harmonic plane wave, we will always take the (+)
sign in Eq. (4.4.21), and the wave will be traveling in the direction of k.

Summary

a-
Eh

q¥E
L

Ek ⊥ k

Bk ⊥ k

}
⇒ transverse polarization (4.4.23)

Bk = k̂×Ek ⇒ Bk ⊥ Ek ⇒ k,Ek,Bk form a right handed coordinate system (4.4.24)

ω2 = c2k2 dispersion relation: how the frequency depends on the wavevector (4.4.25)

|Bk| = |Ek| (4.4.26)

Since the Lorentz force on a charge is F = qE + q
v

c
×B, the result |Bk| = |Ek| means the force on a charge q from

the magnetic field part of the electromagnetic wave is smaller than the force from the electric field part by a factor
(v/c), and so can be ignored for a non-relativistically moving charge.

Most General Solution

Given that the plane waves of Eq. (4.4.6) are a solution to Maxwell’s equations, and Maxwell’s equations are linear,
we can construct more general solutions by linear superposition,

E(r, t) =

∫ ∞
−∞

d3k

(2π)3

[
Ek,+ ei(k·r−ωt) + Ek,− ei(k·r+ωt)

]
(4.4.27)

where by definition we take ω = c|k|, and the two terms correspond to the two signs of the dispersion relation in
Eq. (4.4.21).

Since any function E(r, t) can be written as a Fourier transform, the above is also the most general wave solution.
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Since the physical field E(r, t) must be a real valued quantity, we must have

E(r, t) = E∗(r, t) =

∫ ∞
−∞

d3k

(2π)3

[
E∗k,+ e−i(k·r−ωt) + E∗k,−e−i(k·r+ωt)

]
now take k↔ −k (4.4.28)

=

∫ ∞
−∞

d3k

(2π)3

[
E∗−k,+ e−i(−k·r−ωt) + E∗−k,− e−i(−k·r+ωt)

]
(4.4.29)

=

∫ ∞
−∞

d3k

(2π)3

[
E∗−k,+ ei(k·r+ωt) + E∗−k,− ei(k·r−ωt)

]
(4.4.30)

comparing with Eq. (4.4.27) we conclude,

E∗−k,+ = Ek,− and E∗−k,− = Ek,+ ⇒ E∗k,+ = E−k,− and E∗k,− = E−k,+ (4.4.31)

With ω = c|k|, and k = |k|k̂, we can write,

k · r− ωt = k · (r− vt) where v = ck̂ is the velocity of the wave (4.4.32)

while

k · r + ωt = k · (r− vt) where v = −ck̂ is the velocity of the wave (4.4.33)

If we only combine waves traveling with the same velocity v, say with v = cẑ, then we have,

E(r, t) =

∫ ∞
0

dk

(2π)
Ek,+ eik·(r−vt) +

∫ 0

−∞

dk

2π
Ek,− eik·(r−vt) =

∫ ∞
−∞

dk

2π
Ek eik·(r−vt) = E(r− vt, 0) (4.4.34)

where k = kẑ = |k|k̂, and Ek = Ek,+ for k > 0 while Ek = Ek,− for k < 0.

Thus, if we know E at time t = 0, then we trivially know E at all other times t; we just translate the wave form at
t = 0 by the spatial distance vt to get the form at time t. The wave form travels without changing its shape.

Energy and Momentum of a Simple Harmonic Plane Electromagnetic Wave

For a simple harmonic plane wave, if the amplitudes Ek and Bk are real values, then the physical fields are,

E(r, t) = Re
[
Ekei(k·r−ωt)

]
= Ek cos(k · r− ωt)

B(r, t) = Re
[
Bkei(k·r−ωt)

]
= k̂×Ek cos(k · r− ωt)

(4.4.35)

The energy density of the wave is then,

u(r, t) =
1

8π

[
|E(r, t)|2 + |B(r, t)|2

]
=

1

8π

[
|Ek|2 + |Ek|2

]
cos2(k · r− ωt) (4.4.36)

=
1

4π
|Ek|2 cos2(k · r− ωt) (4.4.37)

Note, it was crucial that we took the real valued form for E before squaring. This is always true when dealing with
expressions using the complex exponential – one must take the real part before making any products. This is because,
if z1 and z2 are two complex numbers, then Re[z1z2] 6= Re[z1]Re[z2], and it is the latter that is the desired physical
result.

The Poynting vector of the wave is,

S(r, t) =
c

4π
E(r, t)×B(r, t) =

c

4π

[
Ek × (k̂×Ek)

]
cos2(k · r− ωt) (4.4.38)

=
c

4π
k̂ |Ek|2 cos2(k · r− ωt) = u(r, t) c k̂ (4.4.39)
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so the energy current S is just the energy density u traveling with velocity ck̂.

The momentum density is

Π(r, t) =
1

c2
S(r, t) =

u(r, t)

c
k̂ (4.4.40)

so

u(r, t) = c |Π(r, t)| (4.4.41)

which you might recognize as the energy-momentum relation of photons!

For visible light, the wavelength λ ∼ 5×10−7m ∼ 5000 Å, and the period T = λ/c ∼ 1.6×10−15 s. For most classical
experiments, the measurements take place on macroscopic scales, `� λ and t� T .

Since the fields thus oscillate rapidly on the time scale of the measurement, we are therefore usually interested in time
averaged quantities,

〈u(r, t)〉 =
1

T

∫ T

0

dt u(r, t) =
1

8π
|Ek|2 (4.4.42)

〈S(r, t)〉 = c〈u(r, t)〉 k̂ =
c

8π
|Ek|2 k̂ (4.4.43)

〈Π(r, t)〉 =
1

c
〈u(r, t)〉 =

1

8πc
|Ek|2 k̂ (4.4.44)

These follow since 1
2π

∫ 2π

0
dΘ cos2 Θ = 1

2 .

All the averages are constant in space.

The intensity I of light falling on a surface with unit normal n̂ is defined as the average power (energy/time) per area
transported by the wave onto the surface,

I = 〈S〉 · n̂ (4.4.45)


