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Problem Set 8, problem 2

In my solution to problem 2 on Problem Set 8 I computed the electromagnetic energy of the spinning charged sphere,

W [ @ [[BF + BP] 1)

as
1474 1/d3 ¢+1/d2'A (2)
== T — rj-
2 PeT 9 J
which should be correct in an electrostatic and magnetostatic situation such as we have in the problem.
I then wrote the above as,

1 1
W = 3 j{ daoo + % ?{ daK-A with S the surface of the sphere of radius R (3)
s ¢Js

since all the charge and current are restricted to the surface of the sphere. Here o = /(4w R?) is the surface charge
density, and K = cwR sin @ is the surface current density.

But you may have wondered, is that OK to do? When I compute the above surface integrals, should I use the values
of ¢ and A just on the outside of the surface of the sphere, or should I use their values just on the inside of the surface
of the sphere? There could possibly be a difference if either ¢ or A were discontinuous at the surface.

The answer is, YES! it is OK to do. One reason is that one can choose potentials ¢ and A that are continuous at
the surface S, so it does not matter if we use the values just outside or just inside. We can also directly compute the
energy W using Eq. (1) and confirm we get the same answer.

Electrostatic Energy

For the electrostatic part of the problem, we know that ¢ can be chosen to be continuous at the surface. The electric
field due to the uniform surface charge on the sphere is,

if' r > R outside

E={ (4)
0 r < R inside

and we can take as the potential

4 r > R outside
o1 - 0
= r < R inside
You can confirm that the above satisfies E = —V¢. Since ¢(r) is continuous at r = R, there is no problem defining
the integral § dao¢. But we can also explicitly compute W from E,
Welee = % /d2r|E|2 = %477 /:drﬂﬁ = ("zz/t)oodr:2 = % (6)

which is exactly the same as we found from % f da o¢.
Magnetostatic Energy

For the magnetostatic part of the problem, we have the magnetic field from problem 1 of Problem Set 5,

% 2 cos O + sin 0 6] r > R outside
B= (7)
—= Z r < R inside



ewR?

where the magnetic dipole moment is m = mz with m = Outside the magnetic field is just like a point

c
magnetic dipole with dipole moment m, while inside the magnetic field is constant.

The vector potential for the field outside is therefore just the dipole vector potential,

out . MXT  msing
AM = —— = —— @ (8)

To get the vector potential inside, we note that a constant magnetic field BZ can be given by the potential

B

A:E[ajy—yk} = V x A = B% (9)
B Brsinf
Now Z xr = Z x (xX + y¥y + 2Z) = (z§ — yX), so we can rewrite the above as, A = 52 XTr = r;m ®. So we
therefore have,
- 2m rsiné mr sin 0
Al = 2 N — N 1
R 2 P73 (10)
Evaluating on the surface at » = R we have,
out _ Mmsing in _ mRsin® . msinf
A - R2 (p7 A - R3 (p - R2 (p (11)

and so on the surface of the sphere A°"* = A'™ and the vector potential is continuous. Hence there is no problem
defining the integral § daK - A. You might ask, what if we chose a different form for A™ than that of Eq. (9). But
we have shown in an earlier discussion question that [ d3rj- A is independent of the gauge of A, and one can show
that the same is true of a surface term ¢ daK - A.

We can also check that we have the correct answer by directly computing Wi, from B.

1 1 1 -
Winag = —/d3r|B|2 = 7/ d3r|B°ut|2+§/ d*r B™[? (12)

81 87 utside inside

Since B'™ = (2m/R3)z is constant, the contribution from the inside is,

1 47R3 2 op?
Wm in — 5 = 53 13
a8 8t 3 (R3) 3R3 (13)

Since Bt = m(2cos O + sinf ) /r3, the contribution from the outside is,

1 27T T fe%s) 4 2 0 <2 0
Whag,out = —mz/ d<p/ d@sin@/ drr? feosTO s f (14)
’ 8 0 0 R T6
= 8—m227r/ df (4sincos® § + sin® 0) / dr — (15)
0
= 4 ez / df (4sin @ cos® 6 + sin O[1 — cos” ¢]) (16)
m? 4 4 I m? m?
= TR [3(:05 97c0s9+§cos 9}0 = 12Rs VH:@ (17)
Note, Wiag,in = 2Wmag,out- S0 the total magnetostatic energy stored in the magnetic fields is,
2m? m? m?
Wmag = mag,in + Wmag,out =t o5 = 57 (18)

3R®  3R3 R3



Using m = ewR?/3c, we then get,

2, 2p4 2, 9
Wma:ewR:ewR (19)
& 9c2R3 9¢2

This is the same result as we obtained from (1/2¢) § da K - A.
General Comments

One can ask, is it just some peculiarity of this particular example that caused A™ = A°" on the surface of the
sphere? Might it be different for some other situation?

Let us consider the behavior of A at a surface current. Take a

Side, " d-Z small Amperian loop C of length d¢ parallel to the surface, and
view~ % width w perpendicular to the surface. By Stokes law we can write
% S'Mp/naz for the magnetic flux through that loop,
C a r l
mhevy -&l
/?N.)% éaww;nguy[;f Ldaﬁ.B:[Qdaﬁ.<VXA):j€1dd£.A (20)
Ot o He page
[4L.74! a
7 z‘ /) where S is the surface bounded by the Amperian loop C' and 11 is
the normal to that surface.

As we take w — 0, the flux through the loop vanishes as B stays finite. The contribution of the sides of width w to
the circulation of A around the loop also vanishes. We thus get,

0=de- (Aabove _ Abelow) (21)

Since df can point in any direction within the tangent plane of the surface, we conclude that the tangential component
of A must always be continuous at a surface current.

Now consider,

/daK ‘A (22)

where the integral is over a surface containing the surface current K. Since K necessarily lies in a direction tangent to
the surface, it is only the tangential component of A that contributes to this integral. Since the tangential components
of A#Pove and APV must be equal, it therefore does not matter whether we use A2P°v¢ or APe°V when computing
this integral — we must get the same answer in either case.



