
1

Unit 3-5: A More Interesting Example!

In the previous section we considered a point charge q at the center of a dielectric sphere of radius R. Now we want
to consider a point charge q inside a dielectric sphere, but the charge is a distance s off from the center. What is the
electrostatic E field inside and outside?

dielectric sphere

v

R

Inside we have ∇ ·D = 4πρ = 4πqδ(r− sẑ).

D = ϵE ⇒ ∇ ·E = 4πρ/ϵ (3.5.1)

For statics, we have,

E = −∇ϕ ⇒ ∇2ϕ = −4πρ

ϵ
= −4πq

ϵ
δ(r− sẑ) (3.5.2)

The solution for ϕ(r) will be of the form,

ϕin(r) =
q

ϵ|r− sẑ|
+ F (r) (3.5.3)

where the first term is due to the point charge q/ϵ (recall, the total charge at the location of q is the screened charge
q/ϵ). The second term must satisfy ∇2F = 0 and will be chosen to get the correct behavior at the boundary of the
dielectric.

Since this problem has azimuthal symmetry (rotational symmetry about the ẑ axis), we can write F in terms of a
Legendre polynomial expansion. For r < R inside the sphere we must have,

F (r) =

∞∑
ℓ=0

aℓ r
ℓPℓ(cos θ) (3.5.4)

There are no bℓ/r
ℓ+1 terms since F should not diverge at the origin.

So inside, r < R, we have

ϕin(r) =
q

ϵ|r− sẑ|
+

∞∑
ℓ=0

aℓ r
ℓPℓ(cos θ) (3.5.5)

From our discussion of the electric multipole expansion, we know that we can write for r > s,

1

|r− sẑ|
=

1

r

∞∑
ℓ=0

(s
r

)ℓ

Pℓ(cos θ) (3.5.6)

So for r > s (but not for r < s) we have,

ϕin(r) =

∞∑
ℓ=0

[
q

ϵr

(s
r

)ℓ

+ aℓ r
ℓ

]
Pℓ(cos θ) for s < r < R (3.5.7)

Outside the sphere there is no charge, so ∇ ·E = 0, or ∇2ϕout = 0. So we can write,

ϕout(r) =

∞∑
ℓ=0

bℓ
rℓ+1

Pℓ(cos θ) for r > R (3.5.8)

Outside there are no aℓr
ℓ terms since we must have ϕout → 0 as r → ∞.

To determine the unknown aℓ and bℓ we use the boundary conditions at the surface of the dielectric at r = R.
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1) The tangential component of E must be continuous

For a static situation where E = −∇ϕ, at the surface of a dielectric (or interface between two different dielectrics), the
condition that the tangential component of the electric field Et is continuous as one crosses the surface is equivalent
to the condition that ϕ is continuous. To see this, consider two points r1 and r2 on the surface. One then has,

ϕ(r2)− ϕ(r1) = −
∫ r2

r1

dℓ ·E (3.5.9)

If we take the curve of integration to lie on the surface, then dℓ·E involves only the components of E that lie tangential
to the surface. Since the tangential components of E are continuous, it does not matter if we take the curve to lie
just below the surface or just above the surface, we get the same result. So we conclude that for any two points on
the surface,

ϕbelow(r2)− ϕbelow(r1) = ϕabove(r2)− ϕabove(r1) (3.5.10)

So if the potentials ϕabove and ϕbelow are equal at any one point on the surface, say ϕabove, (r1) = ϕbelow(r1), then
by the above they must be equal at all points on the surface. We can always add a constant to ϕbelow(r) so that it
is equal to ϕabove at a particular point, hence we conclude that ϕabove(r) = ϕbelow(r) for all points r on the surface.
This means ϕ(r) is continuous as one crosses the surface!

So in our present example,

ϕin(R, θ) = ϕout(R, θ) ⇒ q

ϵR

( s

R

)ℓ

+ aℓR
ℓ =

bℓ
Rℓ+1

(3.5.11)

so,

bℓ =
q

ϵ
sℓ + aℓR

2ℓ+1 (3.5.12)

2) The normal component of D must be continuous (since the free surface charge is σ = 0)

Since n̂ ·D = Dr, and Din = ϵEin and Dout = Eout, then

Din
r = Dout

r ⇒ ϵEin
r = Eout

r ⇒ − ϵ
∂ϕin

∂r

∣∣∣∣
r=R

= − ∂ϕout

∂r

∣∣∣∣
r=R

(3.5.13)

so,

(ℓ+ 1)q

R2

( s

R

)ℓ

− ℓϵaℓR
ℓ−1 =

(ℓ+ 1)bℓ
Rℓ+2

⇒ qsℓ − ℓ

ℓ+ 1
ϵaℓR

2ℓ+1 = bℓ (3.5.14)

Now substitute in bℓ from Eq. (3.5.12) into the above to get,

qsℓ − ℓ

ℓ+ 1
ϵaℓR

2ℓ+1 =
q

ϵ
sℓ + aℓR

2ℓ+1 (3.5.15)

Then solve for aℓ to get,

aℓ =
qsℓ

R2ℓ+1

[
1− 1

ϵ

][
1 +

(
ℓ

ℓ+1

)
ϵ
] (3.5.16)

We can then plug this aℓ into Eq. (3.5.12) to get bℓ,

bℓ =
q

ϵ
sℓ + aℓR

2ℓ+1 =
q

ϵ
sℓ + qsℓ

[
1− 1

ϵ

][
1 +

(
ℓ

ℓ+1

)
ϵ
] (3.5.17)
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After a bit of algebra, one gets,

bℓ = qsℓ

 1 +
(

ℓ
ℓ+1

)
1 +

(
ℓ

ℓ+1

)
ϵ

 (3.5.18)

Whenever you get a solution, and the answer looks a bit complicated, it is always good if you can look at some
simplified special cases where you know what the answer should be, and check that the complicated solution reduces
to the known answer in that limit.

One such simplified special case is to take s → 0, so that the charge lies at the center of the sphere, a problem we
already solved in the previous section of the notes. In this limit, for s = 0,

aℓ = bℓ = 0 for all ℓ ̸= 0 (3.5.19)

a0 =
q

R

[
1− 1

ϵ

]
and b0 = q (3.5.20)

So, for s = 0,

ϕin(r) =
q

ϵr
+

q

R

[
1− 1

ϵ

]
⇒ Ein(r) = −∇ϕin(r) =

q

ϵr2
r̂ as we found before. (3.5.21)

And,

ϕout(r) =
q

r
⇒ Eout(r) = −∇ϕout(r) =

q

r2
r̂ also as found before. (3.5.22)

Note, the constant, that is the second term in ϕin of Eq. (3.5.21), is just what is needed to make ϕ continuous at the
surface r = R.

Another simplified case to check is to let ϵ → ∞. This should model a conductor! This is so since D = ϵE, so if
ϵ → ∞, it must be that E → 0 so that D does not diverge, which is just what one has for a conductor, E = 0 inside.

Again, for ϵ → ∞ one finds that aℓ = bℓ = 0 for all ℓ ̸= 0. For ℓ = 0 one has,

a0 =
q

R
and b0 = q (3.5.23)

so,

ϕin(r) =
q

ϵ|r− sẑ|
+

q

R
→ q

R
as ϵ → ∞, and Ein = −∇ϕin = 0 (3.5.24)

So the field inside the sphere vanishes, and outside we have,

ϕout(r) =
q

r
⇒ Eout = −∇ϕout =

q

r2
r̂ (3.5.25)

So the field outside is just like that of a point charge q at the origin, independent of where q is actually located inside
the sphere. This is indeed just the behavior one would expect for a conducting sphere. The charge q on the conductor
distributes itself as a uniform surface charge σ = q/4πR2 on the surface, giving a zero field inside, and a field outside
that looks like a point charge at the origin.


