Unit 3-6: Bar Magnets in Magnetostatics

In this section we consider ferromagnetic bar magnets, where the material has a fixed magnetization density \mathbf{M} , even when $\mathbf{B} = 0$. The discussion here will illustrate some of the differences between \mathbf{B} and \mathbf{H} .

For a bar magnet, one has $\mathbf{j} = 0$, but \mathbf{M} is fixed and given (this is not a linear material, but rather a ferromagnet!). So for magnetostatics the Macroscopic Maxwell Equations are

$$\nabla \cdot \mathbf{B} = 0$$
 and $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} = 0$ since $\mathbf{j} = 0$ (3.6.1)

Since $\nabla \times \mathbf{H} = 0$ we can write $\mathbf{H} = -\nabla \phi_M$, with ϕ_M the scalar magnetic potential.

Since $\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M}$,

$$\nabla \cdot \mathbf{B} = \nabla \cdot (\mathbf{H} + 4\pi \mathbf{M}) = 0 \qquad \Rightarrow \qquad \nabla \cdot \mathbf{H} = -\nabla^2 \phi_M = -4\pi \nabla \cdot \mathbf{M}$$
(3.6.2)

So

$$\nabla^2 \phi_M = 4\pi \nabla \cdot \mathbf{M} \tag{3.6.3}$$

This is Poisson's equation! Looks just like electrostatics with "magnetic charge density" $\rho_M = -\nabla \cdot \mathbf{M}$.

 ρ_M is the source for **H**.

Note, $\rho_M = -\nabla \cdot \mathbf{M}$, is analogous to our expression for the bound charge density in terms of the polarization density, $\rho_b = -\nabla \cdot \mathbf{P}$. Thus, continuing this analogy, one can argue that on the surface of the bar magnet, there is also a "magnetic surface charge density" $\sigma_M = \hat{\mathbf{n}} \cdot \mathbf{M}$.

Hence we can solve the Poisson's equation (3.6.3) by integrating over the source "charge."

$$\mathbf{H}(\mathbf{r}) = \int_{V} d^{3}r' \,\rho_{M}(\mathbf{r}') \frac{(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^{3}} + \oint_{S} da' \,\sigma_{M}(\mathbf{r}') \frac{(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^{3}}$$
(3.6.4)

where V is the volume of the bar magnet, and S is its surface.

The field lines for **H** can start and end at sources and sinks given by ρ_M and σ_M . In contrast, the field lines for **B** must still be continuous with no sources or sinks, because we still have $\nabla \cdot \mathbf{B} = 0$.

Consider a cylindrical bar magnet of radius R and height L, with fixed $\mathbf{M} = M\hat{\mathbf{z}}$ directed along the cylinder axis.

The magnetization density leads to bound currents flowing in the magnet,

$$\mathbf{j}_b = c\mathbf{\nabla} \times \mathbf{M} = 0 \quad \text{but} \quad \mathbf{K}_b = c\mathbf{M} \times \hat{\mathbf{n}} = \begin{cases} cM\hat{\boldsymbol{\varphi}} & \text{on the side} \\ 0 & \text{on the top and bottom} \end{cases}$$
(3.6.5)

So \mathbf{K}_b looks just like a solenoidal current flowing around the cylinder side, and the field lines of \mathbf{B} will look as in the sketch below.

As we see, the field lines of ${\bf B}$ are continuous, and either start at infinity and go off to infinity, or close back on themselves.

Now let's look at the same situation from the perspective of **H**. The field **H** is determined from the "magnetic charges" ρ_M and σ_M which are,

$$\rho_{M} = -\nabla \cdot \mathbf{M} = 0 \quad \text{and} \quad \sigma_{M} = \hat{\mathbf{n}} \cdot \mathbf{M} = \begin{cases} M & \text{on the top} \\ -M & \text{on the bottom} \\ 0 & \text{on the side} \end{cases}$$
 (3.6.6)

So now the field lines of **H** look just like those of a parallel plate capacitor!

The top surface with $\sigma_M=+M$ acts as source for **H** field lines, while the bottom surface with $\sigma_M=-M$ acts as a sink for **H** field lines.

Outside the bar magnet $\mathbf{H} = \mathbf{B}$, but inside the bar magnet \mathbf{H} and \mathbf{B} are oppositely directed!