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Unit 4-2: Electromagnetic Momentum Density and the Maxwell Stress Tensor

In this section we want to extend the notion of momentum conservation to electromagnetic fields. The math is a bit
more complicated, but the idea is the same as in the last section on conservation of energy. Again, in this section, B
and E are the microscopic fields and ρ and j are the microscopic charge and current densities.

For charges qi at positions ri with velocities vi, the change in the mechanical momentum Pmech of the charges due
to the electromagnetic forces acting on them is,

dPmech

dt
=
∑
i

Fi =
∑
i

qi

[
E(ri) +

vi

c
×B(ri)

]
=

∫
V

d3r

[
ρE +

1

c
j×B

]
(4.2.1)

Using Gauss’ law to write ρ in terms of E, and Ampere’s law to write j in terms of B and E,

ρ =
∇ ·E

4π
and j =

c

4π

[
∇×B− 1

c

∂E

∂t

]
(4.2.2)

we have,

ρE +
1

c
j×B =

1

4π

[
E(∇ ·E) +

(
∇×B− 1

c

∂E

∂t

)
×B

]
(4.2.3)

Now

1

c

∂(E×B)

∂t
=

1

c

(
∂E

∂t
×B

)
+

1

c

(
E× ∂B

∂t

)
=

1

c

(
∂E

∂t
×B

)
−E× (∇×E) (4.2.4)

where in the last step we used Faraday’s law, ∇×E = −1

c

∂B

∂t
to rewrite the second term.

So we have,

−1

c

∂E

∂t
×B = −E× (∇×E)− 1

c

∂(E×B)

∂t
(4.2.5)

Substituting into Eq. (4.2.3) we then get,

ρE +
1

c
j×B =

1

4π

[
E(∇ ·E) + B(∇ ·B)−B× (∇×B)−E× (∇×E)− 1

c

∂(E×B)

∂t

]
(4.2.6)

where we wrote (∇×B)×B = −B× (∇×B), and added the term B(∇ ·B) = 0 in order to make the expression
look symmetric with respect to interchanging E↔ B.

We now define the electromagnetic momentum density vector Π,

Π ≡ 1

4πc
E×B =

1

c2
S with S the Poynting vector (4.2.7)

Then we can write,

dPmech

dt
+
d

dt

∫
V

d3rΠ =
1

4π

∫
V

d3r [E(∇ ·E)−E× (∇×E) + B(∇ ·B)−B× (∇×B)] (4.2.8)

The goal is now to write the right hand side as the flux of a momentum current through the surface S bounding V .

The ith component of the electric field part of the integrand on the right hand side is,

Ei∂jEj − εijkEjεklm∂lEm (4.2.9)

where we use the convention that repeated indices are summed over, ∂j ≡ ∂/∂rj , and the Levi-Civita symbol εijk is
used for the cross products.
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Using the relation εijkεklm = εkijεklm = δilδjm − δimδjl (you should remember this!), we then get,

Ei∂jEj − εijkEjεklm∂lEm = Ei∂jEj − (δilδjm − δimδjl)Ej∂lEm (4.2.10)

= Ei∂jEj − Ej∂iEj + Ej∂jEi (4.2.11)

= ∂j

(
EiEj −

1

2
δijE

2

)
(4.2.12)

A similar expression holds for the magnetic field part.

We now define the Maxwell Stress Tensor
↔
T,

↔
T =

1

4π

[
EE + BB− 1

2

(
E2 +B2

)
I

]
(4.2.13)

or in terms of components,

Tij =
1

4π

[
EiEj +BiBj −

1

2

(
E2 +B2

)
δij

]
(4.2.14)

Note,
↔
T is a symmetric tensor, with Tij = Tji.

So now we have for the ith component of momentum,

dPmech,i

dt
+
d

dt

∫
V

d3rΠi =

∫
V

d3r ∂jTij =

∮
S
da Tij · n̂j (4.2.15)

where ∂jTij ≡
∂Tij
∂rj

. We can also write the above in vector form,

dPmech

dt
+
d

dt

∫
V

d3rΠ =

∮
S
da

↔
T · n̂ (4.2.16)

Because of the historical definition of
↔
T as above, there is no minus sign on the right hand side of the above equation,

which leads to the interpretation that −
↔
T is the current of electromagnetic momentum. In particular, −Tij gives the

flux of the ith component of electromagnetic momentum through a unit element of surface area with normal in the
êj direction.

Note,
dPmech

dt
=
∑
i

Fi ≡ FEM is the total electromagnetic force on the volume V . Hence we can write,

FEM =

∮
S
da

↔
T · n̂− d

dt

∫
V

d3rΠ (4.2.17)

For a static situation, Π is constant in time and the second term above vanishes. We then have,

FEM =

∮
S
da

↔
T · n̂ for statics (4.2.18)

so from this we conclude that Tij is the ith component of the static force on a unit surface area with normal êj , where
êj is pointing outwards from the volume the force FEM is acting upon.

This is the origin of the term “stress” tensor.
↔
T is like the stress tensor of an elastic medium, where Txx, Tyy, and

Tzz are like pressure, and the off diagonal elements are like shear stresses.
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Force on a Conductor Surface

Using the result above, we can now compute the net electrostatic force acting on a conductor’s surface. Recall, for a
conductor in an electrostatic situation, all the charge lies on the conductor’s surface. Consider a conductor as sketched
below.

' ÷:
Consider a small Gaussian pillbox piercing the surface, as shown in the sketch. The
pillbox has top and bottom areas dA and width w. By Eq. (4.2.18), the electromag-
netic force on the volume contained within the pillbox is

FEM =

∮
S
da

↔
T · n̂ (4.2.19)

where S is the surface of the pillbox. As we shrink the width w → 0, this will give
the net force on the patch of surface of area dA with surface charge density σ.

As the side width w → 0, the contribution to the surface integral in Eq. (4.2.19) from this side will vanish. Since we

are in an electrostatic situation, we only need to consider the part of
↔
T that depends on the electric field E. Inside

the conductor E = 0, and so the contribution to the integral in Eq (4.2.19) from the bottom side of the pillbox will

also vanish. All that remains is the contribution from the top side. We thus get FEM = dA
↔
T · n̂, where

↔
T is evaluated

just above the surface of the conductor. The force per unit area on the charged surface of the conductor is thus,

fEM =
↔
T · n̂, where n̂ is the outward pointing normal to the surface of the conductor.

Using the expression for
↔
T in Eq. (4.2.14), the force per unit surface area is,

fEM =
↔
T · n̂ =

1

4π

[
E(E · n̂)− 1

2
E2n̂

]
(4.2.20)

For a conductor surface, we know that Eabove · n̂ = 4πσ (since Ebelow = 0). And since the tangential component of
E at the surface of the conductor must be zero, the field just above the surface is,

E = 4πσ n̂ (4.2.21)

Using this in the expression for the force per unit area then gives,

fEM =
1

4π

[
(4πσ n̂)(4πσ)− 1

2
(4πσ)2 n̂

]
= 2πσ2 n̂ =

1

2
σE (4.2.22)

Note in particular the factor 1/2 in the last result. One might naively have thought that it should be fEM = σE,
just like the force on a point charge is qE. But one needs to exclude the self field of the charge on the surface from
acting on itself! If one considered the force on a small patch of the surface of area dA as arising from all the charge
on the surface except for the charge on the patch dA, one arrives as the same result as above. See Griffiths Sec. 2.5.3.
Alternatively, we could say that the electric field that exerts the force on the surface is the average of the field above
with the field below, Eave = 1

2 (Eabove −Ebelow).

Note, the force on the conductor surface is always pointing outwards. If we considered a simple model of an electron
to be a spherical shell of radius R, with surface charge σ = −e/(4πR2), then the electron would in a sense be unstable
– there would be the force 2πσ2 n̂ pushing the surface outwards. Since the electron is stable, there must be some
other mechanical forces holding the electron together, to balance out this electromagnetic force from the Maxwell
stress tensor. These mysterious “other” forces are called the Poincaré stresses.


