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Unit 6-5: Radiation from Arbitrarily Time Varying Sources and Larmor’s Formula

In the previous sections we considered the radiation from a pure harmonically oscillating source, i.e. oscillating at a
single frequency ω. Here we consider a source with a general time dependence. We consider only the electric dipole
approximation to the radiation, since in the long wavelength (non-relativistic) limit that is the leading term.

For p(t) = pωe
−iωt, a pure harmonic oscillation, we found that the radiated fields, in the electric dipole approximation,

oscillate at the same frequency, E(r, t) = Eω(r)e
−iωt and B(r, t) = Bω(r)e

−iωt, with amplitudes given by,
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For an arbitrarily time varying charge distribution, with electric dipole moment,
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pω e−iωt (6.5.3)

the solution for the fields is obtained by superposition,
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E(r, t) =
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r̂× [̂r× p̈(t− r/c)] where p̈ =

d2p

dt2
(6.5.8)

define the retarded time t0 = t− r/c.
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In spherical coordinates, with p̈(t0) aligned along ẑ,

E(r, t) =
p̈(t0)

c2 r
sin θ θ̂ (6.5.9)

Similarly,

B(r, t) =

∫ ∞

−∞

dω

2π
Bω e−iωt =

∫ ∞

−∞

dω

2π

e−iω(t−r/c)

r

(
ω2

c2

)
r̂× pω (6.5.10)

=
−1

c2 r
r̂× d2

dt2

∫ ∞

−∞

dω

2π
e−iω(t−r/c)pω (6.5.11)

B(r, t) =
−1

c2 r
r̂× p̈(t0) (6.5.12)
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In the above spherical coordinates,

B(r, t) =
p̈(t0)

c2 r
sin θ φ̂ (6.5.13)

The Poynting vector is then,

S(r, t) =
c

4π
E×B =
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2
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The total power radiated through the surface S of a sphere of radius r is then,

P =

∮
S
da n̂ · S = 2π

∫ π
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dθ sin θ r2 r̂ · S =
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dθ sin3 θ (6.5.15)

Using
∫ π

0
dθ sin3 θ = 4/3 we then get,

P =
2[p̈(t0)]

2

3c3
(6.5.16)

Power radiated by an accelerating charge

Apply the above to a point charge q moving along the trajectory r0(t). Then,

°

µ,

obiewer
p(t) = q r0(t) so p̈(t) = q r̈0(t) = q a(t)

where a is the charge’s acceleration.

The radiated power is then,

P =
2

3

q2 a2(t0)

c3
This is Larmor’s formula for the power radiated by an accelerating charge. (6.5.17)

The total power passing through a sphere of radius r at time t is due to the acceleration of the charge at the retarded
time t0 = t− r/c.

Note, there is only power radiated if the charge is accelerating! As we saw in Notes 5-1, a charge moving at constant
velocity does not radiate.

power radiated ∼ (acceleration)2

Since we derived this result using the electric dipole approximation in the long wavelength limit λ ≫ d, the above
Larmor’s formula holds only in the limit of a non-relativistically moving charge, v ≪ c. In unit 7 we will see how to
extend Larmor’s formula to the case where the charge may be moving relativistically fast.
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Discussion Question 6.5

We derived the above expression for Larmor’s formula by using the electric dipole approximation. The
electric dipole approximation was the leading term in the long wavelength approximation, which can be
viewed as giving an expansion in powers of kq ∼ v/c.

If we want the analog of Larmor’s formula, but now for a charge moving relativistically fast, so that v/c is
not small, it suggests we would have to keep lots of higher order terms in this long wavelength approximation
– we would have to keep the magnetic dipole term, the electric quadrupole term, the magnetic quadrupole
term, the electric octupole term, and indeed all higher terms. Clearly we can’t do that! So is there a clever
way we could get the relativistic Larmor’s formula without all that work?

Instability of the Classical Model of an Atom

In the classical model of an atom the electron orbits the nucleus just like a planet orbits the sun. Such an orbiting
electron has centripetal acceleration, and once it was realized that accelerated charges radiate electromagnetic waves
it was realized that a classical orbiting electron would radiate away its energy and spiral into the nucleus. Thus the
classical model of the atom is unstable!

It is of interest to compute what is the time for such an electron to crash into the nucleus. If it were a time of order
the age of the universe, maybe we would not worry. But it turns out to be a very short time!

We will assume for simplicity that the nucleus has a charge +e.

The motion of the electron around the nucleus is given by Newton’s equation.

F = ma ⇒ e2

r2
=
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r
⇒ 1

2
mv2 =

e2

2r
(6.5.18)

where we used a = v2/r as the centripetal acceleration.

The total energy of the electron orbiting at radius r is the sum of its kinetic plus electrostatic potential energy,
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= − e
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2r
(6.5.19)

Now consider the energy lost by the electron due to radiation. From Larmor’s formula we have,
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(6.5.20)

Using a = v2/r = e2/mr2 then gives,
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Now,
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Equating Eqs. (6.5.20) and (6.5.22) then gives,
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(6.5.23)



4

It is useful now to introduce the time scale

τ ≡ 2

3

e2

mc3
(6.5.24)

(we can see this has units of time since e2/r and mc2 both have units of energy). With this definition, the above
becomes

dr

dt
= −3c3τ2

r2
(6.5.25)

Next, we integrate the above to get r(t)∫ r(t)

r0

dr r2 = −
∫ t

0

dt 3c3τ2 ⇒ r3(t)− r30
3

= −3c3τ2t (6.5.26)

so

r3(t) = r30 − 9c3τ2t (6.5.27)

The cube of the radius decreases linearly in time!

We can now expect that the electron will crash into the nucleus when r(t) ≈ 0, or when,

t =
r30

9c3τ2
=

( r0
cτ

)3 τ

9
(6.5.28)

To see how long this is, we note that r0 is just the Bohr radius,

r0 = 0.5× 10−8cm (6.5.29)

while

τ =
2

3

e2

mc3
= 6.26× 10−24sec (6.5.30)

and

cτ = 2× 10−13cm this is the typical length scale of a heavy atomic nucleus (6.5.31)

Putting it together we get,

t =

(
0.5× 10−8

2× 10−13

)3
6× 10−24

9
sec ≈ 10−11sec (6.5.32)

So the atom would go unstable on an extremely short time scale!

This was a fundamental problem that faced physics at the end of the 1800s. Given that charges radiate when they
are accelerated, the classical model of the electron orbiting the nucleus cannot be stable!

The solution to this paradox was provided by quantum mechanics. In quantum mechanics you learn that the stable
quantized energy states of the atom are the solutions to the time-independent Schrödinger equation. The solutions
are time-independent wavefunctions ψ(r), and the charge density of such an electron, ρ(r) = −e|ψ(r)|2, is therefore
independent of time. The electrons in such stable eigenstates are not being accelerated, so they do not radiate
electromagnetic energy!


