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Unit 7-4: Relativistic Larmor’s Formula

In this, our final section, we discuss how to generalize the non-relativistic Larmor’s formula of unit 6 to include the
case when the charge is moving relativistically fast. The non-relativistic Larmor’s formula was based on the electric
dipole approximation in the long wavelength limit, kd� 1, which we saw was equivalent to the non-relativistic limit
where all charges are moving with speeds v � c. Such an approximation is obviously poor when we have a charge
moving with speed v approaching close to c. However this approximation is excellent, indeed exact, in the limit that
the charge is instantaneously at rest with the charge having v = 0. Note, even when the charge is instantaneously at
rest, it still may be accelerating, and so radiating.

So our method will be to compute the power radiated in the charge’s instantaneous rest frame where its v̊ = 0, which
we can do using the non-relativistic Larmor’s formula, and then do a Lorentz transformation of that power back to
the original frame where the charge is moving with any velocity v. We will use a circle above the symbol to denote
quantities computed in the charge’s instantaneous rest frame, such as v̊ = 0. [Note: since the charge is accelerating,
the instantaneous rest frame at a time t will not be the same as the instantaneous rest frame at some other time t′.]

Consider the inertial frame of reference in which the charge is instantaneously at rest. We will call this frame K̊. The
power radiated in this frame is,

P̊ =
dE̊
d̊t

(7.4.1)

where E̊ is the energy radiated.

In K̊ the momentum density of the radiated EM fields is Π̊ = 1
4πc E̊ × B̊ ∼ ˚̂r, which points outward in the radial

direction. Integrating over all space, we see that contribution to the total EM momentum from oppositely oriented
directions will cancel, and so the total radiated EM momentum vanishes, P̊ = 0.

We now consider the energy-momentum 4-vector giving the total energy and momentum of the radiated EM fields.
This is,

P̊µ =

(
P̊ , iE̊

c

)
(7.4.2)

To get the radiated energy in the original frame K, where the charge moves with velocity v, we can make a Lorentz
transformation of the energy-momentum 4-vector P̊µ. Looking at the temporal component of that we get,

E
c

= γ

(
E̊
c
− v

c
· P̊
)

⇒ E = γ E̊ since P̊ = 0. (7.4.3)

Also, taking the Lorentz transformation of the differential position of the charge dx̊µ, we get from the temporal
component,

cdt = γ
(
cd̊t− v

c
· d̊r
)

⇒ dt = γ d̊t (7.4.4)

where the last step follows since, to lowest order, d̊r = 0 since we are in the instantaneous rest frame, that is
v̊ = d̊r/d̊t = 0. Alternatively, since K̊ is the instantaneous rest frame of the charge, d̊t is the same as the proper time
interval ds, and so t = γd̊t follows from Eq. (7.1.40).

So finally we have,

dE
dt

=
γdE̊
γd̊t

=
dE̊
d̊t

⇒ P = P̊ (7.4.5)

The radiated power is a Lorentz invariant scalar!

In K̊ we can use the non-relativistic Larmor’s formula since v̊ = 0. So,

P =
2

3

q2å2

c3
where å is the acceleration of the charge in its rest frame K̊. (7.4.6)
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To write an expression for P without explicitly making mention of the rest frame K̊, we need to find a Lorentz
invariant scalar that reduces to a2 as v → 0 (i.e. for one in the instantaneous rest frame). The only choice is α2

µ,
where αµ is the 4-acceleration of the charge.

αµ =
duµ
ds

= γ
duµ
dt

= γ
d

dt
(γv, icγ) (7.4.7)

The spatial part is α = γ2
dv

dt
+ γv

dγ

dt
, while the temporal part is α4 = icγ

dγ

dt

We have,

dγ

dt
=

d

dt

(
1√

1− v2/c2

)
=

v

c2
· dv
dt

(1− v2/c2)
3/2

=
1

c2
γ3v · a (7.4.8)

Now as v→ 0, γ → 1 and dγ/dt→ 0, so we have,

α→ dv

dt
= a and α4 → 0 as v→ 0 (7.4.9)

Thus,

αµ → (a, 0) and so α2
µ → |a|2 as v→ 0, or equivalently, α2

µ = å2 (7.4.10)

Thus we can write in any inertial frame of reference,

P =
2

3

q2

c3
α2
µ =

2

3

q2

c3
(̊uµ)

2
the relativistic Larmor’s formula (7.4.11)

4-Acceleration

From the above we have,

αµ =

(
γ2
dv

dt
+ γ v

dγ

dt
, icγ

dγ

dt

)
(7.4.12)

Using
dγ

dt
=

1

c2
γ3v · a this becomes,

αµ =

(
γ2a +

1

c2
γ4(v · a)v,

icγ4

c2
v · a

)
= γ2

(
a + γ2

(v · a)v

c2
, iγ2

v · a
c

)
(7.4.13)

and so,

α2
µ = γ4

[
a2 + 2γ2

(v · a)2

c2
+ γ4

(v · a)2v2

c4
− γ4 (v · a)2

c2

]
= γ2

[
a2 + γ2

(v · a)2

c2

(
2 + γ2

v2

c2
− γ2

)]
(7.4.14)

Now γ2(1− v2/c2) = γ2/γ2 = 1, so the term in the big parenthesis on the right is just (2− 1) = 1, and we get,

α2
µ = γ4

[
a2 + γ2

(v · a)2

c2

]
(7.4.15)

which is just the square of the charge’s acceleration in the charge’s instantaneous rest frame, å2.
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Linear Motion

For a charge accelerating in linear motion, velocity and acceleration are co-linear, and so we have v · a = va, and
therefore,

α2
µ = γ4 a2

[
1 + γ2

v2

c2

]
(7.4.16)

Using,

γ2 =
1

1− v2/c2
⇒ v2

c2
= 1− 1

γ2
⇒ 1 + γ2

v2

c2
= γ2 (7.4.17)

we get

α2
µ = γ6 a2 for linear motion (7.4.18)

So,

P =
2

3

q a2

c3
γ6 (7.4.19)

For linear motion, the radiated power is increased by a factor γ6 compared to the non-relativistic result.

Circular Motion

For a charge moving in circular motion, v · a = 0, and we therefore have α2
µ = γ4 a2. The radiated power is then,

P =
2

3

q a2

c3
γ4 (7.4.20)

For a charge moving in circular motion, the radiated power is increased by a factor γ4 compared to the non-relativistic
result.


