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Unit 1-10: Heat Engines

One of the most important topics that propelled early investigations of thermodynamics was the study of heat engines
– how to extract mechanical work from thermal energy, i.e. heat. Heat engines are the subject of this section, and so
here is your chance to finally understand the Carnot cycle!

A model for a heat engine is sketched below.
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Two thermal reservoirs, one hot at temperature TH and one cold at temperature TC , interact with a “working body”
that will convert heat flowing from the hot to the cold reservoir into mechanical work.

For example, the hot reservoir might be some sort of furnace burning fuel. The cold reservoir might be the ambient
atmosphere. The working body might be a chamber of gas that can push a piston.

The hot reservoir can be called the “heat source”. The cold reservoir can be called the “heat sink.”

The working body is assumed to run on a “thermodynamic cycle” – it passes quasistatically (at every moment in
time the system is in thermal equilibrium) through a set of thermodynamic parameters, periodically returning to the
same initial state in order to once again repeat the process for another cycle. This assumption of quasistatic behavior
is clearly a gross simplification for a real engine, but we make it as a theoretical model.

The thermodynamic efficiency of the engine is,

ε =
W

QH
=

work output

heat input
in one cycle. (1.10.1)

ε measures the fraction of the heat QH pumped into the working body that gets converted into mechanical work W
done by the working body. Clearly ε = 1 would be ideal efficiency – all heat is converted into mechanical work. We
will see that this ideal can never be attained.

Since the working body operates quasistatically, changes in energy are related to changes in the thermodynamic
parameters. For a gas, this would be,

dE = TdS − pdV = d-Q− d-W = heat in − work out (1.10.2)

(note, the dash on the differential, d-, indicates that the change in the quantity may depend on the path taken.)

Since the working body operates in a cycle, returning to its initial state, we can integrate the above over one cycle of
operation to get,

0 =

∮
cycle

dE =

∮
cycle

TdS −
∮

cycle

pdV (1.10.3)

where

∮
cycle

dE = Efinal − Einitial = 0 since the system returns to its initial state after one complete cycle.
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Now

∮
cycle

pdV = W is the mechanical work done in one cycle.

And

∮
cycle

TdS = QH −QC = Qtotal is the total heat transferred to the working body in one cycle.

Here QH is the heat pumped in from the hot reservoir, and QC is the heat released to the cold reservoir.

So we can write Eq. (1.10.3) as,

0 = QH −QC −W ⇒ W = QH −QC (1.10.4)

The efficiency can then be written as,

ε =
W

QH
=
QH −QC

QH
⇒ ε = 1− QC

QH
= 1− heat released

heat absorbed
(1.10.5)

A general engine cycle can be represented as a closed loop in the T − S plane, representing the temperature and
entropy of the working body. Because of the physical constraints of the engine (for example the temperatures of the
reservoirs, or the minimum and maximum volumes of a piston) there is generally a minimum allowed value of S and
T and a maximum allowed value of S and T that the engine can operate between. We can therefore take the cycle
as going from the point A of minimum S to the point B of maximum S, and then returning to A, as in the sketch below.
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As the system goes from A → B, the heat transferred to the
working body is the area under the top curve,

∆QAB =

∫ B

A

TdS > 0 (1.10.6)

∆QAB > 0 means this is the heat transferred to the working
body from the hot reservoir, i.e. QH = ∆QAB .

As the system goes from B → A, the heat transferred from the working body is the area under the bottom curve,

∆QBA =

∫ A

B

TdS < 0 (1.10.7)

∆QBA is negative since the integral goes from SB to the smaller SA.

∆QBA < 0 means this is the heat released by the working body to the cold reservoir, QC = −∆QBA.

The total heat transferred, Qtot = QH −QC , is thus the area bounded by the closed loop.

To maximize the engine efficiency, we want to maximize the area under the curve from A to B while minimizing the
area under the curve from B to A.

ε = 1− QC
QH

= 1− |∆QBA|
∆QAB

= 1− area under B → A

area under A→ B
(1.10.8)

Now the loop must be such that all temperatures on it are in the range TC ≤ T ≤ TH , since the temperatures are
bounded by the hot reservoir from above and by the cold reservoir from below.

For an engine operating between the two reservoirs of fixed temperatures TH and TC , the most efficient engine cycle
is the Carnot cycle given by the T − S diagram below.
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One can easily see that this rectangular loop maximizes the area under the A→ B part of the loop, while minimizing
the area under the return B → A part of the loop. For this cycle it is easy to compute the efficiency ε.

QH = TH(SB − SA) = heat absorbed, QC = TC(SB − SA) = heat released (1.10.9)

ε = 1− QC
QH

= 1− TC
TH

(1.10.10)

Since TC and TH must be finite, one always has ε < 1.

For demonstrating that the Carnot cycle is the most efficient, it was convenient to show the cycle in the T −S plane.
However one often sees it depicted instead as a loop in the p− V plane. There it looks as sketched below.
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1) A′ → B is isothermal expansion of the gas at the temperature TH of the hot reservoir. Expanding the gas pushes
the piston and does work. The working body absorbs heat QH = TH(SB − SA) from the hot reservoir.

2) B → B′ is the adiabatic expansion of the gas. The working body is thermally isolated from the hot reservoir. The
gas continues to do work as it expands. No heat is added to the gas as it expands (i.e. ∆Q = 0) so the temperature
of the gas decreases until it reaches TC , the temperature of the cold reservoir.

3) B′ → A is isothermal compression of the gas. The working body is now in thermal contact with the cold reservoir,
maintaining its temperature at TC . Work is done on the working body to compress the gas keeping TC constant, so
the working body releases heat −∆Q = QC = TC(SB − SA) to the cold reservoir.

4) A→ A′ is adiabatic compression of the gas. The working body is thermally isolated from the reservoirs. No heat
flows into or out of the working body. Compressing the gas raises its temperature back up toe TH of the hot reservoir,
and the cycle begins again.

The isothermal segments of the cycle in the p− V plane are curves given by,

pV = NkBT ⇒ p =
NkBT

V
with N fixed and T fixed, one has p ∼ 1

V
(1.10.11)
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The adiabatic segments of the cycle in the p− V plane are curves givenby,

p ∼ 1

V γ
, γ > 0 (1.10.12)

(see Discussion Question 2)

Another common thermodynamic cycle is the Otto cycle which consists of two adiabatic and two constant volume
“strokes,” as in the sketch below.
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One can show that the efficiency of the Otto cycle is given by,

ε = 1−
(
VB
VA

)Cp−CV
CV

(1.10.13)

where CV and Cp are the specific heats at constant volume and constant pressure respectively.

The Otto cycle is a model for an automobile engine, where the piston cycles between two fixed volumes on each stroke
of the engine.

Note: We can see that the same cycle can be represented as a curve in either the T − S plane, p − V plane, S − V
plane, or other variable choices, by the following observation.

Let us take E(S, V ) as the thermodynamic potential. A given “stroke” of a cycle can therefore be represented as a
curve in the S − V plane (as in the Otto cycle diagram above), that tells how S must vary as V varies during the
stroke of the cycle, i.e. S0(V ).

But we also have

−
(
∂E

∂V

)
S

= p(S, V ) (1.10.14)

So the stroke can also be represented by the curve p(S0(V ), V ) in the p − V plane (as in the p − V diagram for the
Carnot cycle).

Also, we can invert the S0(V ) curve to get V0(S), and then use,(
∂E

∂S

)
V

= T (S, V ) (1.10.15)

to represent the stroke as the curve T (S, V0(S)) in the T − S plane (as in the T − S diagram for the Carnot cycle).

Hence we can represent the stroke in many different, but equivalent, ways.
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The Laws of Thermodynamcis

Having finished our discussion of classical thermodynamics, it is perhaps worthwhile to cite the laws of thermodynamics
in their more traditional form. You should convince yourself that these all follow from the postulates we have stated
in our presentation.

Zeroth Law

If two systems are both in thermal equilibrium with a third system, then they are in thermal equilibrium with each
other.

First Law

In a closed system (where there is no transfer of matter into or out of the system), the change in internal energy
of the system ∆U , is given by the heat supplied to the system ∆Q minus the work done by the system ∆W . So
∆U = ∆Q−∆W .

Second Law

When two initially isolated systems in separate but nearby regions of space, each in thermodynamic equilibrium with
itself but not necessarily with each other, are then allowed to interact, they will eventually reach a mutual thermody-
namic equilibrium. The sum of the entropies of the initially isolated systems is less than or equal to the total entropy of
the final combination. Equality occurs just when the two original systems have all their respective intensive variables
(temperature, pressure) equal; then the final system also has the same values.

Third Law

A system’s entropy approaches a constant value as its temperature approaches absolute zero. If the ground state of
the system is unique, that constant is zero.


