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Unit 1-4: Legendre Transformations

We now have two equivalent representations for our thermodynamic system:

1) Entropy formulation in terms of S(E, V,N) – energy E, volume V , number of particles N held fixed.

2) Energy formulation in terms of E(S, V,N) – entropy S, volume V , number of particles N held fixed.

In certain cases it is more natural to regard the temperature T as held constant, rather than the entropy S (in the
lab, you will seldom see an apparatus with a knob to tune S); or to regard the pressure p as held constant, rather
than the volume V ; or to regard the chemical potential µ as held constant, rather than N .

We therefore wish to develop new formulations of thermodynamics that will allow us to regard T , p, or µ as a
fundamental variable rather than S, V , or N . These new formulations will lead to the Helmholtz and Gibbs free
energies, that play the role analogous to energy as the fundamental thermodynamic function of these new formulations.

For example, we have E(S, V,N) with T = (∂E/∂S)V,N . How can we make a thermodynamic potential that contains
all the information of E(S, V,N) but that depends on T rather than S? This leads us to a discussion of . . .

Legendre Transformations

We will first discuss Legendre transforms in a general mathematical context.
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Suppose one has some monotonic function f(x).

We define the variable p(x) =
df

dx
.

How do we find a function g(p) that contains all the information that is in
f(x), but depends on p rather than x? By “contains all the information that
is in f(x),” we mean that one should be able to completely reconstruct f(x)
from the knowledge of g(p).

First guess: As a first guess one might think the following. Invert p(x) = df/dx to solve for x as a function of p. Then
insert this x(p) into f(x) to get,

g(p) = f(x(p)) (1.4.1)

But it turns out that this does not have all the complete information that is contained in f(x)!

To see this, consider two functions:

f1(x) = h(x) and f2(x) = h(x− x0) (1.4.2)

f2 is just a copy of f1 translated by x0 along the x-axis, as in the sketch.
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Let

p1(x) =
df1(x)

dx
=
dh(x)

dx
, p2(x) =

df2(x)

dx
=
dh(x− x0)

dx
(1.4.3)

If f1 = f0 at x = x1, then f2 = f0 when x = x1 + x0 ≡ x2.

It follows that p1(x1) = p2(x2) = p2(x1 + x0), and so inverting,
x2(p) = x1(p) + x0.
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Substituting back into f1 and f2 we get,

g1(p) =f1(x1(p)) = h(x1(p)) (1.4.4)

g2(p) =f2(x2(p)) = f2(x1(p) + x0) = h(x1(p) + x0 − x0) = h(x1(p)) = g1(p) (1.4.5)

So g1(p) and g2(p) are the same even though f1(x) and f2(x) are different! Clearly g(p) constructed this way does
not contain all the information in f(x), since we cannot uniquely reconstruct f(x) from this g(p).

The correct approach is given by the Legendre transform. The Legendre transform starts with the idea that any curve
f(x) can be described by the envelope of its tangent lines, as in the sketch below. For a monotonic convex curve, as
in the sketch, draw all the tangent lines and the upper envelop of those tangents gives the curve (for a concave curve,
it will be the lower envelop).
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The line tangent to the curve f(x) at the point x0 is given by the
equation,

y = px+ b where p =
df

dx
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x=x0

(1.4.6)

and b is determined by,

f(x0) = px0 + b ⇒ b = f(x0)− px0 (1.4.7)

b is the y-intercept of the curve, i.e. y = b when x = 0.

We now define the function

g(p) = f(x)− px where p =
df

dx
(1.4.8)

g(p) is the y-intercept of the tangent line to the curve f(x) at position x, where p = df/dx. Knowing this y-intercept,
and the slope p, one can construct the tangent lines at all x and then find the curve f(x) from the envelop of the
tangent lines.

To define g(p) as a function of the slope p only, one solves p(x) =
df

dx
to get the inverse function x(p), and then

substitutes this x(p) into the above expression for g(p) to get,

g(p) = f(x(p))− px(p) (1.4.9)

In this way one can plot all the tangent lines y = px+ g(p) as p varies, and so construct the family of tangent lines,
and from the envelop of the tangent lines get f(x). Since we can uniquely reconstruct f(x) from knowledge of g(p),
then g(p) contains all the information that was originally contained in f(x).

One says that g(p) is the Legendre transform of f(x).

Another useful, equivalent, way to define g(p) is by the expression,

g(p) = extremum
x

[f(x)− px] (1.4.10)

where the expression in the brackets is to be evaluated at the value of x that gives its extremal value. When f(x) is
convex, i.e. d2f/dx2 > 0, then the extremum is the minimum of f − px. When f(x) is concave, i.e. d2f/dx2 < 0,
then the extermum is the maximum of f − px.



3

To see that this definition is equivalent, note that the condition for locating the extremum x is,

d

dx
[f(x)− px] = 0 ⇒ df

dx
− p = 0 ⇒ df

dx
= p (1.4.11)

So one solves df/dx = p for x(p) and substitutes it into [f(x) − xp] to get g(p) = f(x(p)) − px(p), and one arrives
again at Eq. (1.4.9).

Having defined the Legendre transform g(p), we now note one of its important properties,

dg

dp
=

d

dp
[f(x(p))− px(p)] =

df

dx

dx

dp
− x− pdx

dp
=

dx

dp

[
df

dx
− p

]
− x = −x since

df

dx
= p (1.4.12)

For g(p) the Legendre transform of f(x) we thus have,

p =
df

dx
and x = −dg

dp
(1.4.13)

One says that x and p are conjugate variables.

The Legendre transform allows one to take a function f(x), which is described by the variable x, and find an equivalent
reformulation g(p) that is described by the conjugate variable p = df/dx.

You may have already encountered Legendre transforms in classical mechanics. In the Lagrangian formulation of
classical mechanics the fundamental function is the Lagrangian L[q, q̇], where q is a generalized coordinate and
q̇ = dq/dt is the corresponding velocity. In the Hamiltonian formulation of classical mechanics one wants to replace
the variable q̇ by the variable p = ∂L/∂q̇. This p is called the canonically conjugate momentum to the coordinate q.
The fundamental function to use in the Hamiltonian formulation is therefore the Legendre transform of L[q, q̇] from
q̇ to p,

L[q, q̇]− pq̇ ≡ −H[p, q] (1.4.14)

where H[p, q] is the Hamiltonian, that depends on the coordinates q and their conjugate momenta p. Because p and
q̇ are Legendre conjugate variables, we then know that,

∂L
∂q̇

= p and
∂(−H)

∂p
= −q̇ ⇒ ∂H

∂p
= q̇ (1.4.15)

which gives one of Hamiltonian dynamical equations.

The second of Hamilton’s equations of motion follows from Lagrange’s equation of motion,

∂L
∂q
− d

dt

(
∂L
∂q̇

)
= 0 ⇒ ∂L

∂q
= ṗ (1.4.16)

Then with

∂H
∂q

=
∂

∂q
[pq̇ − L] = −∂L

∂q
= −ṗ ⇒ ∂H

∂q
= −ṗ (1.4.17)


