Unit 1-5: Free Energies

Having found the Legendre transform, we are now able to apply it to our thermodynamic problem of how to convert,
for example, from the variable entropy S to the variable temperature 7.

Helmholtz Free Eneregy A(T,V, N)

If we want a formulation of thermodynamics in which temperature T, rather than entropy S, is regarded as an
independent variable, all we have to do is to take the Legendre transform of the energy E(S,V, N), transforming from
the variable S to its conjugate variable T' = (0E/9S)y,n.

E(S,V,N), with 8£ =T(S,V,N) (1.5.1)
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The function A(T,V, N) is called the Helmholtz free energy (note, in some texts the Helmholtz free energy is denoted
as F).

To construct A(T,V, N) the prescription is:
From (Zg) =T(S,V, N) we invert this function with respect to S to get S(T,V, N). Then we substitute that in
to get A, o

A(T,V,N) = E(S(T,V,N),V,N) — TS(T, V, N) (1.5.3)

We can explicitly confirm that (9A/0T)y,ny = —S as follows:

By the chain rule,
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Similarly we can consider the other first partial derivatives of A.
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Similarly we can show,

(gj\lf):p,v - (éiff)sw = u(T, V. N) (1.5.9)



So the partials of A with respect to variables that were not involved in the Legendre transform (i.e. V and N) behave
just like the corresponding partials of F.

We can now write for the differential of A,
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dA = —SdT — pdV + pdN (15.11)

Also, since the Euler relation gives F =TS — pV + uN, and A = E — TS, we have,

A= —pV +uN (1.5.12)

Enthalpy H(S,p, N)

When one wants to use pressure instead of volume, one constructs the enthalpy H(S,p, N) by taking a Legendre
transform of E(S,V,N) from V to p.
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H(S,p,N)=FE+pV  with <a> =V (1.5.14)
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Note, since (0E/0V)g n = —p, with the minus sign, the conjugate variable to V' is really —p. That is why we define
the enthalpy as H = E — (—p)V = E+pV, and (0H/I(—p))syn =—-V = (0H/Op)sn =V

One can also show that,
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As we saw with A, the partials with respect to the variables that are not involved in the Legendre transform remain
the same as the partials of E.

The differential of the enthalpy is then
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dH = TdS + Vdp + pdN (1.5.17)

Since the Euler relation is E =TS — pV + uN, and H = E + pV, we have,

H =TS+ uN (1.5.18)




Gibbs Free Energy G(T,p, N)

When we want to use both temperature T and pressure p instead of entropy S and volume V', we make a Legendre
transform with respect to both variables S and V.

E(S,V,N) with oF =T, and oF =—p (1.5.19)
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The differential of the Gibbs free energy is then,
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dG = =SdT + Vdp + pdN (1.5.23)

Since the Euler relation is E =TS —pV + uN, and G = E — T'S 4+ pV, we have,
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The chemical potential is therefore just the Gibbs free energy per particle g.
From G = uN we get dG = pdN + Ndpu. Subtracting from that dG = —SdT + Vdp + pdN one gets,
0 = [wdN + Ndu] — [-SdT + Vdp+ pdN]=| SdT —Vdp+ Ndu =0 (1.5.25)

which is just the Gibbs-Duhem relation!

Note: If one were dealing with a system with more than one species of particles, i.e. N7 of type 1, Ny of type 3, N3 of
type 3, etc., then the energy F, and so the Gibbs free energy GG, would depend on each N; separately. We then have,
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The Euler relation becomes E =TS — pV + 1 N1 + paoNa + pi3N3 + ..., and then we get
G(T7p, Nl,NQ, Ng, .. ) = ,U/INI + ,U,QNQ + M3N3 + ... (1527)
The Grand Potential ®(T,V, )

Now we wish to use temperature T and chemical potential y instead of entropy S and number of particles N. So we
make a Legendre transform on both S and N.

E(S,V,N)  with oF =T,  and o =1 (1.5.28)
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transform to the Grand Potential P,
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The differential of the Grand Potential is then,
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Since the Euler relation is £ =TS — pV + uN, and ® = E — TS — uN, we have,

d=—pV or —==p (1.5.33)

The pressure p is (—) the grand potential per unit volume.

The free energies discussed above were obtained, working in the energy formulation, as Legendre transforms of the
energy FE(S,V,N). We could also have gotten similar results working in the entropy formulation, by taking Legendre
transforms of the entropy S(FE,V, N). It is useful to summarize this alternative way.

Recall, for S(E,V,N),
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So if we take the Legendre transform of S from E to T we get S — T Recalling A = E— TS then gives S = T

and so,
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If we take the Legendre transform of S from E to T and from V to % we get S — T % Recalling G = E-TS+pV
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And if we take the Legendre transform of S from E to T and from N to —% we get S — T + Recalling
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So when taking the Legendre transform of S, we get the corresponding potential that we get when transforming F,
multiplied by —1/T.



