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Unit 2-16: The Grand Canonical Ensemble

Consider a system of interest which is in contact with both a thermal and a particle reservoir.
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The system of interest (henceforth “the system”) has energy,
volume, and number of particles, E, V , and N . The reservoir
has ER, VR and NR. The wall separating the two allows the
exchange of both energy and particles.
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One way such a situation may arise physically is if “the sys-
tem” is just a certain volume immersed in a much larger
volume of the same stuff, and the walls about “the system”
are just are mental constructs.

The reservoir is so large that, no matter how much energy or how many particles the system exchanges with the
reservoir, the reservoir’s temperature TR and chemical potential µR do not change – this is just what we mean by a
reservoir!

We see this as we argued before. If heat ∆Q = T∆S is exchanged with the reservoir, then the change in temperature
is,

∆TR =

(
∂TR
∂SR

)
∆S =

(
∂2ER
∂S2

R

)
∆S .

N

NR
TR since ER ∼ TRSR ∼ TRNR, SR ∼ NR, and ∆S . N . (2.16.1)

So if N � NR, then ∆TR � TR.

Similarly, if ∆N is exchanged with the reservoir, then the change in the chemical potential is,

∆µR =

(
∂µR
∂NR

)
∆N =

(
∂2ER
∂N2

R

)
∆N .

N

NR
µR since ER ∼ µRNR, and ∆N . N . (2.16.2)

So if N � NR, then ∆µR � µR.

So we regard TR and µR of the reservoir as fixed. Then, because the system is in equilibrium with the reservoir, we
also have for the temperature and chemical potential of the system, T = TR and µ = µR.

The ensemble in which both energy and number of particles can fluctuate, subject to the constraints of a fixed T and
µ, is called the grand canonical ensemble.

Now, although the system can exchange energy and particles with the reservoir, the total energy and number of
particles in the combined system plus reservoir is fixed.

ET = E + ER, NT = N +NR, V, VR are all held fixed. (2.16.3)

Similar to what we did for the canonical ensemble, the number of states for the combined system plus reservoir is
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given by,

ΩT (ET , V, VR, NT ) =

NT∑
N=0

∫ ET

0

dE

∆E
Ω(E, V,N)ΩR(ET − E, VR, NT −N) (2.16.4)

=

NT∑
N=0

∫ ET

0

dE

∆E
Ω(E, V,N)eSR(ET−E,VR,NT−N)/kB (2.16.5)

where we integrate over all possible divisions of the energy, and sum over all possible divisions of the number of
particles, between the system and the reservoir.

Since ET is held fixed, the combined system plus reservoir is described by the microcanonical ensemble, and so all
states of the combined system plus reservoir are equally likely. The probability density for the system to have energy
E and N particles is therefore just proportional to the number of states of the combined system plus reservoir that
have the system with E and N ,

P(E,N) ∝ Ω(E, V,N)

∆E
eSR(ET−E,VR,NT−N)/kB (2.16.6)

Now since E � ET and N � NT , we can expand,

SR(ET − E, VR, NT −N) ≈ SR(ET , VR, NT ) +

(
∂SR
∂ER

)
(−E) +

(
∂SR
∂NR

)
(−N) (2.16.7)

= SR −
E

T
+
µN

T
(2.16.8)

since (∂SR/∂ER) = 1/TR = 1/T , and (∂SR/∂NR) = µR/TR = µ/T . Here SR = SR(ET , VR, NT ) is a constant
independent of E and N .

We thus have,

P(E,N) ∝ Ω(E, V,N)

∆E
e−(E−µN)/kBT (2.16.9)

Normalizing so that,

NT∑
N=0

∫ ET

0

dE P(E,N) = 1 (2.16.10)

we have,

P(E,N) =

Ω(E, V,N)

∆E
e−(E−µN)/kBT

NT∑
N=0

∫ ET

0

dE

∆E
Ω(E, V,N) e−E/kBT eµN/kBT

(2.16.11)

The denominator in the above expression for P(E,N) defines the grand canonical partition function L,

L(T, V, µ) =

∞∑
N=0

[∫ ∞
0

dE

∆E
Ω(E, V,N) e−E/kBT

]
eµN/kBT

=

∞∑
N=0

QN (T, V ) eµN/kBT =

∞∑
N=0

QN (T, V ) zN

the grand canonical
partition function

(2.16.12)
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where z ≡ eµ/kBT is called the fugacity. Note, in principle the sum should go up to NT and the integral up to ET ,
however in the thermodynamic limit these both go to infinity.

Note, L(T, V, µ) is just the discrete Laplace transform of QN (T, V ) from N to −µ/kBT . This is consistent with −µ/T
being the conjugate variable to N in the entropy formulation. And, as we will soon see, L determines the Grand
Potential by −Φ/T = kB lnL. Thus the process of going from the canonical ensemble to the grand canonical ensemble
is analogous to the process of going from the microcanonical ensemble to the canonical ensemble.

The above discussion had in mind a system with a continuum phase space and a continuous spectrum of allowed
energies E. Consider now that we have discrete states (for example by dividing phase space into discrete cells of
volume h3N ) labeled by the index i, such that state i has energy Ei and number of particles Ni. Considering the
phase space to now include all states with any number of particles N , we can write,

QN (T, V ) =
∑

i such that
Ni = N

e−Ei/kBT canonical partition function (2.16.13)

and so,

L(T, V, µ) =
∑
N

[ ∑
i such that
Ni = N

e−Ei/kBT

]
eµN/kBT (2.16.14)

L =
∑
i

all states

e−(Ei−µNi)/kBT grand canonical partition function (2.16.15)

The probability for the system to have energy Ei and Ni particles is then,

P(Ei, Ni) =
Ω(Ei, V,Ni) e−(Ei−µNi)/kBT

L
(2.16.16)

and since Ω just counts the number of states of the system with energy Ei and Ni particles, and all these states are
equally likely, then the probability for the system to be in any particular state i is,

Pi =
e−(Ei−µNi)/kBT

L
=

e−(Ei−µNi)/kBT∑
j

e−(Ej−µNj)/kBT
(2.16.17)

This is the obvious generalization of what we had earlier for the canonical ensemble.

Note, our expressions for Pi, L, etc., make no reference at all to the reservoir, except for T = TR and µ = µR.


