Unit 2-18: Non-Interacting Particles in the Grand Canonical Ensemble

We had for the grand canonical partition function,
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L= Z NQN(T, V) where z = ¢ is the fugacity, and Qu is the canonical partition function.
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For non-interacting particles we had,
1 N
Qn(T,V) = N1 [Ql(T, V)} for indistinguishable particles, as in the ideal gas
and
N
Qn(T,V) = {Ql(T, V)} for distinguishable particles, as in paramagnetic spins
where @) is the single particle partition function.
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Indistinguishable Particles

For indistinguishable particles we thus have In £ = z Q)1 and so,
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So, combining these last two results, we have,
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the ideal gas law, no matter what is Q.
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So, no matter what is the single particle Hamiltonian (i.e. no matter what is (1), indistinguishable non-interacting

particles will always obey the ideal gas law.
Ideal Gas of Indistinguishable Particles

For a simple gas of point particles,
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For a more complicated gas, for example where the particles might have internal degrees of freedom, )7 will have this
same form but with a different f(T).

We have,
L= =2V = InL =2V f(T) (2.18.10)

The grand potential is then

®=—kpTInL =—kpTzVf(T)=-pV =  p=kgTzf(T) recall, z=e* (2.18.11)
and
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Combining the above two results give,
P N
—— =zf(T) and — =zf(T) = pV = NkgT (2.18.13)
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So we get the ideal gas law no matter what is f(7'), i.e. no matter what might be the internal degrees of freedom of
the particles.

Also,
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E = ( 5 )Vz = kT ( 5T )V’Z =kgT ZVdT using In £ = 2V f(T) (2.18.14)
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= kT Nf aT = kpT*N a7 using N = 2V f(T) (2.18.15)
and so,
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If the single particle Hamiltonian has only harmonic degrees of freedom (for example p, or harmonic internal degrees
of freedom such as internal vibrations of a molecule), one has f o< T" for some power n (for a simple point particle,
where p is the only harmonic degree of freedom, one has n = 3/2 as in Eq. (2.18.9)). In this case,

O f\ (OnInT]\ n _ 9 ony\
( 57 ) = ( 57 ) =7 = B=keT°N( g5 ) =nksTN (2.18.17)
and
Cy = 2nkpN + kgT2N (;Z) = nkgN (2.18.18)

The Helmholtz free energy is,

A=0+uN = —kpTzVf(T) + (kgTlnz)(2Vf(T)) using p = kpT'Inz and N = 2V f(T) (2.18.19)
= 2V F(T) k:BT[lnz - 1} - NkBT[lnz - 1] (2.18.20)
and so,
A(T,V,N) = NkpT |In -1 here eusedN—sz:>z—£ (2.18.21)
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This result agrees with a direct calculation from the canonical ensemble,
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And, lastly, the entropy is,

S=-— <8A>V7N = Nkg {m ( N > - 1] ~ Nk 2020 (2.18.24)
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Distinguishable Particles

This corresponds to a situation in which particles are localized, so that we can distinguish them by their spatial
location.

Now we expect Q1 = ¢(T') — it is not proportional to the volume V since the particles are localized. Then,
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L 1-2Q1  1-2¢(T) note, if we had 1 & V, then the series in Eq. (2.18.5) would not converge! (2.18.25)
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A=®+uN = —kgTln (1 1Z¢) + (kpTInz)N = kBT{ln(l — 20) + Nlnz} (2.18.32)

Now use 1 — z¢ =~ 1/N and z = 1/¢ to get,

A= —kgTNIng¢(T)+O(In N) (2.18.33)



