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Unit 2-3: Liouville’s Theorem

The concept of the density matrix will soon be expanded beyond the particular example of the microcanonical ensemble
discussed in the previous section. It can also be generalized to non-equilibrium situations, where the density matrix

varies with time, ρ(qi, pi, t). We therefore want to see what general condition ρ must satisfy in order that
∂ρ

∂t
= 0,

and so ρ is describing a steady, time-independent, state.
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Consider an initial density ρ of points in phase space. As the systems represented
by these initial points evolve in time, their trajectories give the density ρ(t) at later
times. Think of the points in ρ like particles in a fluid. The probability density ρ
must obey a local conservation equation (think of the charge conservation equation
of E&M),

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.3.1)

where u is the “velocity” vector of the probability current ρu, that tells how the
points in ρ flow in the 6N dimensional phase space.

The vector u is the 6N dimensional vector u ≡ (q̇1, . . . , q̇3N , ṗ1, . . . , ṗ3N ), and ∇ ≡
(

∂

∂q1
, . . . ,

∂

∂q3N
,
∂

∂p1
, . . . ,

∂

∂p3N

)
,

so

∇ · (ρu) ≡
3N∑
i=1

[
∂

∂qi
(ρq̇i) +

∂

∂pi
(ρṗi)

]
=

3N∑
i=1

[
∂ρ

∂qi
q̇i + ρ

∂q̇i
∂qi

+
∂ρ

∂pi
ṗi + ρ

∂ṗi
∂pi

]
(2.3.2)

=

3N∑
i=1

([
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
+ ρ

[
∂q̇i
∂qi

+
∂ṗi
∂pi

])
(2.3.3)

Now from Hamilton’s equations of motion,

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

⇒ ∂q̇i
∂qi

=
∂2H
∂qi∂pi

,
∂ṗi
∂pi

= − ∂2H
∂pi∂qi

⇒ ∂q̇i
∂qi

+
∂ṗi
∂pi

= 0 (2.3.4)

and so,

∇ · (ρu) =

3N∑
i=1

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
=

3N∑
i=1

[
∂ρ

∂qi

∂H
∂pi
− ∂ρ

∂pi

∂H
∂qi

]
≡ [ρ,H] (2.3.5)

where [ρ,H] defines the Poisson bracket of the two observables ρ and H (in the correspondence of classical to quantum
mechanics, the Poisson bracket becomes the commutator).

So the equation of conservation of probability in phase space, Eq. (2.3.1), becomes

∂ρ

∂t
+ [ρ,H] = 0 or

∂ρ

∂t
+

3N∑
i=1

[
∂ρ

∂qi

dqi
dt

+
∂ρ

∂pi

dpi
dt

]
≡ dρ

dt
= 0 (2.3.6)

This is Liouville’s theorm. Here the total derivative dρ/dt, sometimes called the convective derivative, is just the total
derivative of ρ(qi(t), pi(t), t) with respect to t; dρ/dt tells how the value of ρ changes in time as seen by an observer
who travels along with the system on its trajectory {qi(t), pi(t)}.
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density of fluid stays constant
so volume of fluid stays constant
as drop deforms

Liouville’s theorem, that dρ/dt = 0, therefore says that the probability
density in phase space ρ stays constant in time as one flows along with
the density, just like the behavior of an incompressible fluid. This is a
consequence of the probability conservation law of Eq. (2.3.1).

However, for ρ to describe equilibrium, the probability density must obey
the stronger condition that ∂ρ/∂t = 0, i.e. the probability for the system
to be at any fixed point {qi, pi} in phase space stays constant in time.
Only when ∂ρ/∂t = 0 will ensemble averages be independent of time.

To have
∂ρ

∂t
= 0 ⇒ [ρ,H] = 0, and so for equilibrium ρ must satisfy,

[ρ,H] =

3N∑
i=1

[
∂ρ

∂qi

∂H
∂pi
− ∂ρ

∂pi

∂H
∂qi

]
= 0 (2.3.7)

We will have [ρ,H] = 0 provided ρ(qi, pi) depends on the {qi, pi} only via the function H[qi, pi], i.e. if ρ = ρ(H[qi, pi]).
Then we have,

∂ρ

∂qi
=

∂ρ

∂H
∂H
∂qi

and
∂ρ

∂pi
=

∂ρ

∂H
∂H
∂pi

(2.3.8)

so that,

[ρ,H] =

3N∑
i=1

[
∂ρ

∂qi

∂H
∂pi
− ∂ρ

∂pi

∂H
∂qi

]
=

3N∑
i=1

[
∂ρ

∂H
∂H
∂qi

∂H
∂pi
− ∂ρ

∂H
∂H
∂pi

∂H
∂qi

]
= 0 (2.3.9)

We already saw one example of such an equilibrium density matrix,

ρ(qi, pi) = C δ(H[qi − pi]− E) the microcanonical ensemble (2.3.10)

Anther choice that we will soon see is,

ρ(qi, pi) = C e−H[qi,pi]/kBT the canonical ensemble (2.3.11)

where in both cases C is an appropriate normalization constant.


