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Unit 2-7: Indistinguishable Particles

When the particles are indistinguishable one from another, then the state where particle 1 is at coordinates (q1, p1)
and particle 2 is at coordinates (q2, p2) is indistinguishable from the state where particle 1 is at (q2, p2) and particle
2 is at (q1, p1).

In computing the number of states Ω as we have done in the previous sections, we have therefore over counted. The
correct counting should be,

Ω(E, V,N) =
1

N !

1

h3N

∫
dqi

∫
dpi D(H[qi, pi]− E) (2.7.1)

where D(H[qi, pi]− E) equals unity if E −∆E/2 ≤ H[qi, pi] ≤ E + ∆E/2, and zero otherwise.

The factor 1/N ! is now in front of the integral since there are N ways to choose which particle is at coordinates (q1, p1),
(N −1) ways to choose which of the remaining particles is at coordinates (q2, p2), (N −2) ways to choose which of the
remaining particles is at coordinates (q3, p3), etc. So there are N ! ways to choose which particle is labeled by which
coordinates. The different ways to match the particles to coordinates do not represent distinguishably different states
because the particles are indistinguishable. Hence, to avoid over counting when we integrate over all (qi, pi) we have
to divide the integral by N !.

So with this correction to Ω to account for the indistinguishability of particles, the new result for the entropy of the
gas S = kB ln Ω is related to our old result by,

Snew = Sold − kB lnN ! = Sold − kBN lnN + kBN (2.7.2)

where in the last step we used Stirling’s approximation, lnN ! ≈ N lnN −N . Our old result was,

Sold =
3

2
kBN + kBN ln

[
V

h3

(
4πmE

3N

)3/2
]

(2.7.3)

so Eq. (2.7.2) now gives for Snew,

S(E, V,N) =
5

2
kBN + kBN ln

[
V

h3N

(
4πmE

3N

)3/2
]

the Sackur-Tetrode equation (2.7.4)

This result clearly gives an entropy S that is now extensive, and agrees with the result we got from integrating the
Gibbs-Duhem relation.

In particular, we now find that S(λE, λV, λN) = λS(E, V,N) as required for extensivity.

We can return now to reconsider the entropy of mixing. If the two gases are of different types, then we now have,

Sinit =
5

2
kBN1 + kBN1 ln

[
V1

h3N1

(
4πm1E1

3N1

)3/2
]

+
5

2
kBN2 + kBN2 ln

[
V2

h3N2

(
4πm2E2

3N2

)3/2
]

(2.7.5)

and

Sfinal =
5

2
kBN1 + kBN1 ln

[
V

h3N1

(
4πm1E1

3N1

)3/2
]

+
5

2
kBN2 + kBN2 ln

[
V

h3N2

(
4πm2E2

3N2

)3/2
]

(2.7.6)

and so the entropy of mixing is,

∆S = Sfinal − Sinit = kBN1 ln

(
V

V1

)
+ kBN2 ln

(
V

V2

)
= kBN1 ln

(
N

N1

)
+ kBN2 ln

(
N

N2

)
(2.7.7)
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It the last step we used a result we have used before: because the two gases were initially at the same temperature
and pressure, then V1/N1 = V2/N2 = kBT/p, and so V = V1 + V2 = (N1 + N2)kBT/p and so also V/N = kBT/p.
From this it follows that V/V1 = N/N1 and V/V2 = N/N2.

The above result of Eq. (2.7.7) is exactly the same as we found before using Sold. So the fact that the particles are
indistinguishable does not change the entropy of mixing if the two gases are of different types.

Now we reconsider the case where the two gases are of the same type. In this case, Sinit is the same as in Eq. (2.7.5)
above, except with m1 = m2 = m,

Sinit =
5

2
kBN1 + kBN1 ln

[
V1

h3N1

(
4πmE1

3N1

)3/2
]

+
5

2
kBN2 + kBN2 ln

[
V2

h3N2

(
4πmE2

3N2

)3/2
]

(2.7.8)

When the partition is removed, the system is a single gas of N = N1 + N2 particles, with total energy E1 + E2,
confined to a volume V . The entropy is then,

Sfinal = S(E, V,N) =
5

2
kBN + kBN ln

[
V

h3N

(
4πmE

3N

)3/2
]

(2.7.9)

Since initially the two gases were at the same temperature, and after mixing they remain at the same temperature,
we can write E1/N1 = E2/N2 = E/N = 3

2kBT . The entropy of mixing is then,

∆S = Sfinal − Sinit = kBN ln

(
V

N

)
− kBN1 ln

(
V1

N1

)
− kBN2 ln

(
V2

N2

)
(2.7.10)

= kB(N1 +N2) ln

(
V

N

)
− kBN1 ln

(
V1

N1

)
− kBN2 ln

(
V2

N2

)
(2.7.11)

= kBN1 ln

(
V N1

NV1

)
+ kBN2 ln

(
V N2

NV2

)
(2.7.12)

But since the gases were both at the same initial pressure we have V1 = N1kBT/p and V2 = N2kBT/p, and so also
V = V1 + V2 = (N1 +N2)kBT/p = NkBT/p. So we therefore have

V

V1
=

N

N1
and

V

V2
=

N

N2
(2.7.13)

and so

∆S = kBN1 ln

(
V N1

NV1

)
+ kBN2 ln

(
V N2

NV2

)
= kBN1 ln

(
NN1

N1N

)
+ kBN2 ln

(
NN2

N2N

)
(2.7.14)

= kBN1 ln(1) + kBN2 ln(1) = 0 (2.7.15)

so now the entropy of mixing vanishes, as we expect that it should!

Note: If one has N1 particles of one type of gas, and N2 particles of a different type of gas, both in the same box of
volume V , then the entropy of the mixture is,

S(E, V,N1, N2) = S1(E1, V,N1) + S2(E2, V,N2) (2.7.16)

where E1/N1 = E2/N2 = 3
2kBT , since the two gases must be at equal temperature if they are in equilibrium.

But if both gases are the same (i.e. we have only mentally divided them up into one group of N1 particles and another
group of N2 particles), then Eq. (2.7.16) will no longer be correct, i.e.

S(E, V,N) 6= S(E1, V,N1) + S(E2, V,N2) (2.7.17)
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because the particles in the one gas are indistinguishable from the particles in the other gas, and so S must be
extensive, which Eq. (2.7.17) is not. To see this, imagine that initially the gases were equal with E1 = E2 = E/2 and
N1 = N2 = N/2. Then Eq. (2.7.17) would be,

S(E, V,N) = S(E/2, V,N/2) + S(E/2, V,N/2) ⇒ S(E, V,N) = 2S(E/2, V,N/2) (2.7.18)

But extensivity would require instead,

S(E, V,N) = 2S(E/2, V/2, N/2) (2.7.19)

Another, more general way, to think about the entropy of mixing and the indistinguishability of
particles:

Again imagine we have two gases on two sides of a box, separated by a partition. Initially both gases are at the same
T and p. When the partition is removed, the mixtures will remain at the same T and p. We then have,
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If the red gas and the blue gas are exactly the same except for different colors (i.e. m1 = m2 = m), then we expect
the initial entropies of the two cases will be the same, SI

init = SII
init.

Now since in case II we must have ∆SII = 0, since case II is a reversible process, so we must have SII
final = SII

init = SI
init.

We therefore can write the entropy of mixing for case I as,

∆SI = SI
final − SI

init = SI
final − SII

final (2.7.20)

Now let us compute SI
final and SII

final.

Case I

Consider the total number of states available to a system composed of the mixture of two gases with N1 and N2

particles respectively, both in volume V .

If the two gases are of different types, i.e. red and blue, so that the particles of gas 1 can be distinguished from the
particles of gas 2, then the total number of states is,

ΩT (E, V,N1, N2) =

∫ E

0

dE1

∆E
Ω1(E1, V,N1) Ω2(E − E1, V,N2) (2.7.21)

Here ΩT is the total number of states available to the combined system, Ω1 is the number of states available to the
particles of gas 1 with energy E1, and Ω2 is the number of states available to the particles of gas 2 with energy
E2 = E − E1.
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We already noted that, for large N1 and N2, the integrand will be strongly peaked about some particular Ē1, so that
we can write,

ΩT (E, V,N1, N2) ≈ Ω1(Ē1, V,N1) Ω2(E − Ē1, V,N2) (2.7.22)

We then get for the entropy S = kB ln Ω,

ST (E, V,N1, N2) = S1(Ē1, V,N1) + S2(E − Ē1, V,N2) (2.7.23)

where

(
∂S1

∂E1

)∣∣∣∣
E1=Ē1

=

(
∂S2

∂E2

)∣∣∣∣
E2=E−Ē1

so that the two gases are at the same temperature.

So we have,

SI
final = S1(Ē1, V,N1) + S2(E − Ē1, V,N2) (2.7.24)

Case II

Now suppose the two gases are of the same type, i.e. red and red, so that the particles of gas 1 cannot be distinguished
from the particles of gas 2. Then the total number of states available to the combined system will be,

ΩT (E, V,N1, N2) =

∫ E

0

dE1

∆E

N1! Ω1(E1, V,N1) N2! Ω2(E − E1, V,N2)

N !
(2.7.25)

Here the factor
N1! N2!

N !
appears in the integrand because of the indistinguishability of the two gases.

This is because N1! Ω1 is the number of states available to the N1 particles if they were distinguishable, and N2! Ω2

is the number of states available to the N2 particles if they were also distinguishable. So N1! Ω1N2! Ω2 would be
the number of states available to the combined system if all particles were distinguishable. But since the particles
are in fact all indistinguishable (particles in gas 1 are indistinguishable from each other, and particles in gas 2 are
indistinguishable from each other, and particles in gas 1 are indistinguishable from particles in gas 2) then we know
that the correct number of states available to the combined system of N = N1 + N2 indistinguishable particles is
[N1! Ω1N2! Ω2]/N !

Now the integrand in Eq. (2.7.25) will be strongly peaked about some Ē1, so we then have,

ΩT (E, V,N1, N2) ≈ N1!N2!

N !
Ω1(Ē1, V,N1) Ω2(E − Ē1, V,N2) (2.7.26)

and so the entropy S = kB ln Ω is,

ST (E, V,N1, N2) = S1(Ē1, V,N1) + S2(E − Ē1, V,N2)− kB ln

(
N !

N1!N2!

)
(2.7.27)

So we conclude that

SII
final = S1(Ē1, V,N1) + S2(E − Ē1, V,N2)− kB ln

(
N !

N1!N2!

)
(2.7.28)

So now, using Eq. (2.7.20), we can compute the entropy of mixing for case I by subtracting Eq. (2.7.28) from
Eq. (2.7.24),

∆SI = SI
final − SII

final = kB ln

(
N !

N1!N2!

)
(2.7.29)
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Using Stirling’s formula, lnN ! ≈ N lnN −N , we then get,

∆SI = kB

[
N lnN −N −N1 lnN1 +N1 −N2 lnN2 +N2

]
(2.7.30)

= kB

[
(N1 +N2) lnN −N1 lnN1 −N2 lnN2

]
since N = N1 +N2 (2.7.31)

= kBN1 ln

(
N

N1

)
+ kBN2 ln

(
N

N2

)
(2.7.32)

But the above result is exactly the same as we found in Eq. (2.7.7). So what have we gained by this new presentation?

In the earlier calculation leading to Eq. (2.7.7) we used the explicit formula for the entropy S of the ideal gas, and
also the ideal gas law and the relation between energy and temperature for an ideal gas. In the current derivation we
did not make any assumption that we were dealing with an ideal gas; the number of states Ω1 and Ω2 are general. So
the entropy of mixing of two different types of gas, given by Eq. (2.7.32), holds even if the gas is not ideal, but has
interactions among the particles.


