Unit 3-2: Quantum Many Particle Systems — Bosons vs Fermions

A system of N identical (i.e., indistinguishable) particles is described by a wavefunction,
P(ry, $1,r2,82,..., N, sn) =9(1,2,...,N) where r; and s; are the position and spin of particle ¢ (3.2.1)

Identical particles means that the probability density |¢|? should be symmetric under the interchange of any pair of
coordinates,

(L, iy g, NP2 = 0005,y NP (3.2.2)

There are two possible symmetries for .

1) 4 is symmetric under pair interchanges, ¥(1,...,4,...,4,...,N) =(1,...,
2) 1 is antisymmetric under pair interchanges, ¥(1,...,4,...,7,...,N) = —9(

Case (1) is called Bose-Einstein (BE) statistics. Particle that obey such statistics are called bosons.
Case (2) is called Fermi-Dirac (FD) statistics. Particles that obey such statistics are called fermions.
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For a general permutation P that interchanges any number of pairs of particles,

For BE statistics, Py = ).

For FD statistics, Py = (—1)¥1, where P is the number of pairwise interchanges needed to make the permutation PP.
For FD, when P is even, then Py = +1. When P is odd, then Py = —1.

BE statistics are for particles with integer spin, s =0,1,2,....
FD statistics are for particles with half integer spin, s = %,
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Now consider non-interacting particles. The N-particle Hamiltonian is the sum of single particle Hamiltonians,
H(1,2,3,...,N) =HDO Q)+ HD () + HV3) + - - + HO(N) (3.2.3)
and we can write the N-particle wavefunction as a product of single particle wavefunctions,
B2, N) = 61, (1)3,(2) - - iy (N) (3.2.4)
where ¢; is an eigenstate of the single particle H(!) with energy e;.
But while the above v will solve Schrodinger’s equation, Hiy = Et, with E = ¢;, +¢€;, + -+ €, this ¢ does not have

the proper symmetry required for BE or FD statistics. We can construct an appropriately symmetrized wavefunction
as follows.

For BE,
1
= P 3.2.5
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For FD,

1 P
Vpp = N %:(—1) P (3.2.6)

where the sum is over all permutations P of the N particles, Np is the number of possible permutations of the N
particles (Np = N!), and 1 is the product of single particle wavefunctions as in Eq. (3.2.4).

You can verify that, with the above definitions, PYpp = ¥pg, and PYpp = (—1) 1prp, for any permutation P, as
desired.

For a v described by Eq. (3.2.4), or its symmetrized versions ¢¥pg and ¥ rp, the total energy is,

E=c +e,+ - +ey=> nje (3.2.7)
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where the last sum is over all single particle eigenstates ¢;, n; is the number of particles in single particle eigenstate
¢j,and 3 nj = N.

For BE statistics, n; = 0,1,2,... is any integer.
For FD statistics, the only allowed possibilities are n; = 0 or 1.

This is because if we had two particles in any given single particle state, say ¢1, then the wavefunction ¢ would look
like,

'(/}(17 2,3,..., N) = ¢1(1)¢1(2)¢i3 (3) o Giy (N) (3'2'8)
1

S p(—=1)PP1p, then for every term in the sum ¢1(i)1(5) i, (k) - - - diy (£)

)iz (k) - - - iy (£) from interchanging i <> j, so these will cancel pair by pair

But then when we construct ¢¥pp =

5

there must also be a term (—1)¢1(j)d1
and we find that ¥rp = 0.
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The Pauli Exclusion Principle: No two fermions can occupy the same single particle state; alternatively one could
say, no two fermions can have the same “quantum numbers.”

There is no similar restriction for bosons.

Occupation numbers: The specification of any non-interacting N particle quantum state can be given by the occupation
numbers {n;}, that give how many particles are in each single particle eigenstate ¢;. Each set of {n;} corresponds to
one N-particle state.




