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Unit 3-2: Quantum Many Particle Systems – Bosons vs Fermions

A system of N identical (i.e., indistinguishable) particles is described by a wavefunction,

ψ(r1, s1, r2, s2, . . . , rN , sN ) ≡ ψ(1, 2, . . . , N) where ri and si are the position and spin of particle i (3.2.1)

Identical particles means that the probability density |ψ|2 should be symmetric under the interchange of any pair of
coordinates,

|ψ(1, . . . , i, . . . , j . . . , N)|2 = |ψ(i, . . . , j . . . , i, . . . , N)|2 (3.2.2)

There are two possible symmetries for ψ.

1) ψ is symmetric under pair interchanges, ψ(1, . . . , i, . . . , j, . . . , N) = ψ(1, . . . , j . . . , i, . . . , N)
2) ψ is antisymmetric under pair interchanges, ψ(1, . . . , i, . . . , j, . . . , N) = −ψ(1, . . . , j . . . , i, . . . , N)

Case (1) is called Bose-Einstein (BE) statistics. Particle that obey such statistics are called bosons.
Case (2) is called Fermi-Dirac (FD) statistics. Particles that obey such statistics are called fermions.

For a general permutation P that interchanges any number of pairs of particles,
For BE statistics, Pψ = ψ.
For FD statistics, Pψ = (−1)Pψ, where P is the number of pairwise interchanges needed to make the permutation P.
For FD, when P is even, then Pψ = +ψ. When P is odd, then Pψ = −ψ.

BE statistics are for particles with integer spin, s = 0, 1, 2, . . . .
FD statistics are for particles with half integer spin, s = 1

2 ,
3
2 ,

5
2 , . . . .

Now consider non-interacting particles. The N -particle Hamiltonian is the sum of single particle Hamiltonians,

H(1, 2, 3, . . . , N) = H(1)(1) +H(1)(2) +H(1)(3) + · · ·+H(1)(N) (3.2.3)

and we can write the N -particle wavefunction as a product of single particle wavefunctions,

ψ(1, 2, . . . , N) = φi1(1)φi2(2) · · · φiN (N) (3.2.4)

where φi is an eigenstate of the single particle H(1) with energy εi.

But while the above ψ will solve Schrodinger’s equation, Hψ = Eψ, with E = εi1 +εi2 + · · ·+εiN , this ψ does not have
the proper symmetry required for BE or FD statistics. We can construct an appropriately symmetrized wavefunction
as follows.

For BE,

ψBE =
1√
NP

∑
P

Pψ (3.2.5)

For FD,

ψFD =
1√
NP

∑
P

(−1)PPψ (3.2.6)

where the sum is over all permutations P of the N particles, NP is the number of possible permutations of the N
particles (NP = N !), and ψ is the product of single particle wavefunctions as in Eq. (3.2.4).

You can verify that, with the above definitions, PψBE = ψBE , and PψFD = (−1)PψFD, for any permutation P, as
desired.

For a ψ described by Eq. (3.2.4), or its symmetrized versions ψBE and ψFD, the total energy is,

E = εi1 + εi2 + · · ·+ εiN =
∑
j

njεj (3.2.7)
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where the last sum is over all single particle eigenstates φj , nj is the number of particles in single particle eigenstate
φj , and

∑
j nj = N .

For BE statistics, nj = 0, 1, 2, . . . is any integer.

For FD statistics, the only allowed possibilities are nj = 0 or 1.

This is because if we had two particles in any given single particle state, say φ1, then the wavefunction ψ would look
like,

ψ(1, 2, 3, . . . , N) = φ1(1)φ1(2)φi3(3) · · · φiN (N) (3.2.8)

But then when we construct ψFD =
1√
NP

∑
P(−1)PPψ, then for every term in the sum φ1(i)φ1(j)φi3(k) · · · φiN (`)

there must also be a term (−1)φ1(j)φ1(i)φi3(k) · · · φiN (`) from interchanging i↔ j, so these will cancel pair by pair
and we find that ψFD = 0.

The Pauli Exclusion Principle: No two fermions can occupy the same single particle state; alternatively one could
say, no two fermions can have the same “quantum numbers.”

There is no similar restriction for bosons.

Occupation numbers: The specification of any non-interactingN particle quantum state can be given by the occupation
numbers {ni}, that give how many particles are in each single particle eigenstate φi. Each set of {ni} corresponds to
one N -particle state.


