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Unit 3-3: Particle in a Box States, the Two Particle Density Matrix

Particles in a Box

For free particles we will often consider the quantum single particle states to be particle in a box states.

We take our system to have length L in each direction x̂, ŷ, and ẑ. The volume is V = L3. We will also use periodic
boundary conditions, defined by,

φ(x+ L, y, z) = φ(x, y, z), φ(x, y + L, z) = φ(x, y, z), φ(x, y, z + L) = φ(x, y, z) (3.3.1)

The single particle energy eigenstates can then be written as,

φk(r) =
1√
V

eik·r with energy εk =
~2k2

2m
(3.3.2)

Here ~ = h/2π, with h being Planck’s constant.

Periodic boundary conditions require,

φk(x+ L, y, z) =
1√
V

eikx(x+L)eikyyeikzz = φk(x, y, z) =
1√
V

eikxxeikyyeikzz (3.3.3)

This requires,

eikxL = 1 ⇒ kx =
2π

L
nx with nx = 0,±1,±2, . . . integer (3.3.4)

and similarly,

ky =
2π

L
ny and kz =

2π

L
nz, with nx, ny = 0,±1,±2, . . . (3.3.5)

The spacing between allowed values of kx (or ky or kz) is ∆k =
2π

L
.

Non-Interacting Two Particle System

Here we will compute 〈r1, r2| ρ̂2 |r1, r2〉, the diagonal elements of the two particle density matrix ρ̂2 in the position
basis. This gives the probability density that one particle is at position r1 and the other is at r2. The goal is to see
how the BE vs the FD statistics affect the probability that the two particles will be near each other.

The single particle wavefunctions are φk(r) = 1√
V

eik·r with εk = ~2k2

2m .

For free, non-interaction, particles, the energy eigenstates of the two particle system are specified by two wavevectors

k1 and k2 and have energy E = ~2

2m (k21 + k22). We will denote these energy eigenstates as |k1,k2〉. The symmetrized
two particle wavefunctions for the energy eigenstates are therefore,

ψk1,k2
(r1, r2) ≡ 〈r1, r2| k1,k2〉 =

1√
2!(
√
V )2

[
ei(k1·r1+k2·r2) ± ei(k1·r2+k2·r1)

]
with + for BE and − for FD

(3.3.6)

Then,

〈r1, r2| ρ̂2 |r1, r2〉 = 〈r1, r2|
e−βĤ

Q2
|r1, r2〉 =

∑
|k1,k2〉

〈r1, r2| k1,k2〉
e−β~

2(k21+k
2
2)/2m

Q2
〈k1,k2| r1, r2〉 (3.3.7)

=
1

Q2

∑
|k1,k2〉

e−β~
2(k21+k

2
2)/2m| 〈r1, r2| k1,k2〉 |2 (3.3.8)
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Note, if we take k1 ↔ k2, then 〈r1, r2| k1,k2〉 = ±〈r1, r2| k2,k1〉. But since this matrix element is squared in the

above sum, any sign change is canceled out. Thus, in taking the sum over all eigenstates, we can replace
∑
|k1,k2〉

by

independent sums on k1 and k2, provided we multiply by 1/2! so as not to double count |k1,k2〉 and |k2,k1〉 which
represent the same physical state. Thus,

〈r1, r2| e−βĤ |r1, r2〉 =
1

2!

∑
k1,k2

e−β~
2(k21+k

2
2)/2m| 〈r1, r2| k1,k2〉 |2 (3.3.9)

Now from Eq. (3.3.6) we have,

| 〈r1, r2| k1,k2〉 |2 =
2± eik1·r12e−k2·r12 ± e−ik1·r12eik2·r12

2V 2
where r12 ≡ r1 − r2 (3.3.10)

=
1± Re

[
eik1·r12e−ik2·r12

]
V 2

(3.3.11)

For convenience, let α = β~2/m. Then,

〈r1, r2| e−βĤ |r1, r2〉 =
1

2!V 2

∑
k1,k2

e−αk
2
1/2e−αk

2
2/2
(

1± Re
[
eik1·r12e−ik2·r12

] )
(3.3.12)

Now for large V = L3 we have small ∆k = 2π/L. We can then approximate,

1

V

∑
k

=
1

V (∆k)3

∑
k

(∆k)3 =
1

V

(
L

2π

)3 ∫
d3k =

1

(2π)3

∫
d3k (3.3.13)

We thus have,

〈r1, r2| e−βĤ |r1, r2〉 =
1

2(2π)6

∫
d3k1

∫
d3k2 e−αk

2
1/2e−αk

2
2/2
(

1± Re
[
eik1·r12e−ik2·r12

] )
(3.3.14)

To evaluate the above, we will need the following integrals,∫ ∞
−∞

d3k e−αk
2/2 =

(
2π

α

)3/2

(3.3.15)

which follows from the familiar Gaussian integration
∫∞
−∞dx e−x

2/2σ2

=
√

2πσ2.

We also need,∫ ∞
−∞

d3k e−αk
2/2+ik·r (3.3.16)

which we will do by “completing the square.” We have,

−α
2
k2 + ik · r = −α

2

(
k2 − 2i

α
k · r

)
= −α

2

[(
k− ir

α

)2

+
r2

α2

]
= −α

2
k̃2 − r2

2α
(3.3.17)

where k̃ ≡ k− ir

α
. We can now do the integral,

∫ ∞
−∞

d3k e−αk
2/2+ik·r =

∫
d3k̃ e−αk̃

2/2 e−r
2/2α =

(
2π

α

)3/2

e−r
2/2α (3.3.18)

where in the integral over k̃, the integration over k̃µ takes place along the contour kµ− irµ/α, in the lower half of the

complex k̃µ plane, parallel to the real k̃µ axis, as in the sketch below. However, since the region between the real axis
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and this contour encloses no poles of the integrand, we can move the integration back to the real k̃µ axis and evaluate
as a normal real Gaussian integral to get the final result.

Im KI

o Re KI
s, no poles l llll llll l

- x
-

Q [contour of integration~

over kx .

Canbe moved

to real axis as integrand
has no poles in between

So doing the integrals in Eq. (3.3.14) we now get,

〈r1, r2| e−βĤ |r1, r2〉 =
1

2(2π)6

(
2π

α

)3 [
1± e−r

2
i2/α

]
=

1

2(2πα)3

[
1± e−r

2
12/α

]
(3.3.19)

It is customary to introduce the thermal wavelength λ that we saw already in Eq. (2.19.23),

λ2 = 2πα =
2πβ~2

m
=

2π~2

kBTm
=

h2

2πmkBT
(3.3.20)

only here the constant h, which classically was arbitrary, is now specifically Planck’s constant. We now have,

〈r1, r2| e−βĤ |r1, r2〉 =
1

2λ6

[
1± e−2πr

2
12/λ

2
]

(3.3.21)

To finish the calculation of 〈r1, r2| ρ̂2 |r1, r2〉, we now need to compute Q2,

Q2 = Tr[e−βĤ] =

∫
d3r1

∫
d3r2 〈r1, r2| e−βĤ |r1, r2〉 =

1

2λ6

∫
d3r1

∫
d3r2

[
1± e−2πr

2
12/λ

2
]

(3.3.22)

Define the average coordinate of the two particles R = (r1 + r2)/2 and their separation r = r1 − r2 = r12. We can
then do a transformation of integration variables to change the integration from d3r1d

3r2 to d3Rd3r.

Q2 =
1

2λ6

∫
d3R

∫
d3r

[
1± e−2πr

2/λ2
]

=
V

2λ6

[
V ±

∫ ∞
0

dr 4πr2 e−2πr
2/λ2

]
(3.3.23)

where the integration over d3R gives the overall factor of V . Continuing to do the integral over dr we get,

Q2 =
1

2

(
V

λ3

)2 [
1± 1

23/2

(
λ3

V

)]
≈ 1

2

(
V

λ3

)2

as V →∞ in the thermodynamic limit (3.3.24)

So finally, we can put all the pieces together. Using our results from Eqs. (3.3.21) and (3.3.24) we get,

〈r1, r2| ρ̂2 |r1, r2〉 =

1

2λ6

[
1± e−2πr

2
12/λ

2
]

1

2

(
V

λ3

)2 (3.3.25)

〈r1, r2| ρ̂2 |r1, r2〉 =
1

V 2

[
1± e−2πr

2
12/λ

2
]

with
+ for BE
− for FD

(3.3.26)
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We can now compare the above result to what we would expect for two classical non-interacting particles in a box of
volume V . Since the positions of these particles are uncorrelated (since they are non-interacting), and each particle
is equally likely to be anywhere in the box, the probability density to find one at r1 and the other at r2 is just,

ρ2(r1, r2) =
1

V 2
(3.3.27)

Thus it is the ±e−2πr
2
12/λ

2

term in Eq. (3.3.26) that gives the quantum corrections to this classical result. We see that
the quantum correction introduces spatial correlations between the two particles. This is due entirely to the required
symmetry of the two-particle wavefunction rather than any direct interaction between the particles.

For BE statistics, using the + sign, we see that the probability for the particles to be separated a distance r12 is larger
that it is classically. BE statistics give an effective attraction between the particles.

For FD statistics, using the − sign, we see that the probability for the particles to be separated a distance r12 is
smaller that it is classically. FD statistics give an effective repulsion between the particles.

The length scale on which the quantum correction is important is r12 . λ, the thermal wavelength. We can now give
the physical meaning of the thermal wavelength of Eq. (3.3.20). Since kBT is roughly the thermal energy of a typical
particle in a gas in equilibrium at temperature T , then the de Broglie wavenumber k of such a particle would be given
by kBT ∼ ~2k2/2m. With k = 2π/λ and ~ = h/2π we then get kBT ∼ h2/2mλ2. We thus see that the thermal
wavelength λ =

√
h2/2πmkBT is roughly the de Broglie wavelength of a typical particle in a gas at temperature T .

Thus, when two particles are separated on a length scale r12 � λ, it is reasonable to expect they see no quantum
effects. However, when the particles are separated on a length scale r12 . λ, so that their wavepackets overlap, then
quantum effects will be important!

To get a better feeling for the quantum correlation induced between the two particles by their quantum statistics, we
can ask what classical interaction between the two particles would give rise to the same correlation?

Suppose two classical particles have a pairwise interaction potential v(|r1−r2|) = v(r12). Then the classical probability
density to have one particle at r1 and the other at r2 would be,

ρ2(r1, r2) =

∑
p1,p2

e−βH[r1,p1,r2,p2]

∑
p1,p2

∑
r1,r2

e−βH[r1,p1,r2,p2]
=

∑
p1,p2

e
−β

 p21
2m

+
p22
2m

+v(r12)



∑
p1,p2

∑
r1,r2

e
−β

 p21
2m

+
p22
2m

+v(r12)

 =
e−βv(r12)∑

r1,r2

e−βv(r12)
(3.3.28)

Transforming to center of mass and difference coordinates as before, R = (r1 + r2)/2 and r = r1 − r2 = r12, for large
V and assuming v(r12)→ 0 as r12 →∞, we get.∑

r1,r2

e−βv(r12) =
∑
R

∑
r

e−βv(r) = V
∑
r

e−βv(r) ≈ V 2 (3.3.29)

The last step follows because, as r gets large, v(r) → 0 and e−βv(r) → 1. So the fraction of the volume V for which
e−βv(r) is significantly different from unity becomes negligibly small once L = V 1/3 is much larger than the range of
the interaction v(r).

We thus have for the classical two-particle probability density,

ρ2(r1, r2) =
e−βv(r12)

V 2
(3.3.30)

Comparing to Eq. (3.3.26), the effective classical interaction potential v(r12) that would reproduce the quantum
correlations, is,
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r/λ

±

v±(r) = −kBT ln
[
1± e−2πr

2/λ2
]

+ for BE
− for FD

(3.3.31)

To summarize, we found that BE statistics lead to an effective attraction
between otherwise non-interacting particles, while FD statistics lead to
an effective repulsion.

These quantum correlations become noticeable on particle separations
r . λ, where λ =

√
h2/2πmkBT is the thermal wavelength.

N-Particle Partition Function in the Position Representation

For those who enjoy this sort of thing, we can also compute the N -particle partition function QN using the position
representation.

The eigenstates are,

〈r1, . . . , rN | k1, . . . ,kN 〉 =
1√

N !V N

∑
P

(±1)P ei
∑
i(Pri)·ki + for BE,− for FD (3.3.32)

where Pri is a permutation of the positions ri, i.e. if P(123) = 231, then P1 = 2, P2 = 3, and P(3) = 1, and we sum
over all N ! possible permutations.

Now,

〈r1, . . . , rN | e−βĤ |r1, . . . , rN 〉 =
∑

|k1,...,kN 〉

e−
β~2

2m (k21+···+k
2
N )| 〈r1, . . . , rN | k1, . . . ,kN 〉 |2 (3.3.33)

and

| 〈r1, . . . , rN | k1, . . . ,kN 〉 |2 =
1

N !V

∑
P

∑
P′

(±1)P+P ′ei
∑
i[Pri−P

′ri]·kk (3.3.34)

Now we can write

[Pri − P′ri] · ki =
[
P
(
ri − P−1P′ri

)]
· ki =

(
ri − P−1P′ri

)
· P−1ki (3.3.35)

where P−1 is the inverse permutation of P; also, the order P of P−1 is the same as that of P. Therefore we have,

| 〈r1, . . . , rN | k1, . . . ,kN 〉 |2 =
1

N !V

∑
P

∑
P′′

(±1)P
′′
ei

∑
i(ri−P

′′ri)·P−1kk (3.3.36)

where P′′ = P−1P′ and P ′′ = P + P ′.

Now when we sum over the energy eigenstates |k1, . . . ,kN 〉 in Eq. (3.3.33), we sum over all the ki. Since ki is a
dummy index in the sum, it does not matter whether we label it ki or P−1ki. So in the above, each term in the

∑
P

contributes an equal amount. We can therefore replace
∑

P by N ! times the one term P = I, the identity. Similarly,
when we do the sum on the eigenstates

∑
|k1,...,kN 〉 we can do independent sums on k1, . . . ,kN provided we add a

factor 1/N ! to prevent double counting.
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The result is,

〈r1, . . . , rN | e−βĤ |r1, . . . , rN 〉 =
1

N !V N

∑
k1,...,kN

e−
β~2

2m (k21+···+k
2
N )
∑
P

(±1)P ei
∑
i ki·(ri−Pri) (3.3.37)

=
1

N !(2π)3N

∑
P

(±1)P
N∏
i=1

[∫
d3ki e−

β~2

2m k2i+iki·(ri−Pri)
]

(3.3.38)

This integral we already did when we considered the two particle problem. With α ≡ β~2/2m, we have,

〈r1, . . . , rN | e−βĤ |r1, . . . , rN 〉 =
1

N !(2π)3N

∑
P

(±1)P
N∏
i=1

[(
2π

α

)3/2

e−(ri−Pri)
2/2α

]
(3.3.39)

=
1

N !(2π)3N

(
2π

α

)3/2∑
P

(±1)P
N∏
i=1

f(r− Pri) (3.3.40)

=
1

N !λ3N

∑
P

(±1)P
N∏
i=1

f(r− Pri) (3.3.41)

where λ2 = 2πα, and f(r) = e−r
2/2α = e−πr

2/λ2

with f(0) = 1.

The N -particle partition function is then,

QN =

∫
d3r1· · ·

∫
d3rN 〈r1, . . . , rN | e−βĤ |r1, . . . , rN 〉 (3.3.42)

=
1

N !λ3N

∑
P

(±1)P
∫
d3r1· · ·

∫
d3rNf(r1 − Pr1)f(r2 − Pr2) . . . f(rN − PrN ) (3.3.43)

The leading term in the sum on P is when P = I the identity. Then Pri = ri and all the terms f(ri−Pri) = f(0) = 1.

The next most leading terms are those corresponding to permutations involving only a singe pair exchange, say
Pri = rj and Prj = ri, while all other Prk = rk. In this case there are only two of the f(ri−Pri) factors that are not
unity.

The next order are terms from permutations involving an exchange of only three particles, Pri = rj , Prj = rk, and
Prk = ri. The next order are terms from permutations involving exchanges of four particles, etc.

We thus have,

QN =
V N

N !λ3N

1±
∑
i<j

∫
d3ri
V

∫
d3rj
V

f(ri − rj) f(rj − ri)

+
∑
i<j<k

∫
d3ri
V

∫
d3rj
V

∫
d3rk
V

f(ri − rj) f(rj − rk) f(rk − ri) ± . . .


(3.3.44)

The leading term
V N

N !λ3N
is just the classical result, provided we take the phase space parameter h to be Planck’s

constant. Note, we automatically get the Gibbs 1/N ! factor for identical particles.

The higher order terms are the quantum corrections that arise from 2-particle, 3-particle, etc., exchanges. For BE
the terms all add with + signs. For FD the terms add with alternating signs.


