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Unit 3-4: Quantum Partition Function for Non-Interacting Particles

We now consider the partition function for a quantum mechanical system of non-interacting fermions or bosons – this
is the quantum ideal gas.

To do this we will use the occupation number representation, in which the integer ni gives how many particles are in
the single particle energy eigenstate φi with single particle energy εi. The total configuration of the system is given
by the set of occupation numbers {ni}.

The total energy of the system is then: E =
∑
i

εini (3.4.1)

and the total number of particles is: N =
∑
i

ni (3.4.2)

The canonical partition function for a system of N particles is given by,

QN (T, V ) =
∑
{ni}

s.t.
∑
i ni = N

e−βE({ni}) =
∑
{ni}

δ
(∑

i

ni −N
)

e−β
∑

i εini (3.4.3)

In the first sum, the sum is restricted to only configurations {ni} that have exactly N particles,
∑
i ni = N . In the

second sum, we sum over all possible configurations {ni} and impose the constraint
∑
i ni = N via a delta function in

the summand. Since the argument of this delta function in an integer, this is a Kronecker delta (rather than a Dirac
delta), such that δ(n) = 1 when n = 0 and δ(n) = 0 when n 6= 0.

Factoring the exponential, we can then write,

QN (T, V ) =
∑
{ni}

δ
(∑

i

ni −N
)∏

i

e−βεini (3.4.4)

Because of the constraint imposed by the delta function, it is difficult to carry out this summation over the states
{ni}. We can not sum over the individual ni independently, because there is a constraint among them,

∑
i ni = N .

However we can remove this constraint by going to the grand canonical ensemble,

L(T, V, z) =

∞∑
N=0

zNQN =

∞∑
N=0

∑
{ni}

δ
(∑

i

ni −N
)∏

i

zni e−βεini (3.4.5)

where the fugacity is z = eβµ and we used zN = z
∑

i ni =
∏
i

zni
i .

We can now reverse the order of the summations and do the

∞∑
N=0

first to eliminate the delta function. We then get,

L(T, V, z) =
∑
{ni}

∏
i

(
ze−βεi

)ni
(3.4.6)

where the sum over the {ni} is now an unconstrained sum over the individual ni, corresponding to systems with any
number N of particles.

Note: the procedure we used above is analogous to the procedure we used in going from the microcanonical to the
canonical ensemble. In the microcanonical ensemble, to find Ω we had to integrate over all of phase space subject to the
constraint that the total energy is fixed to be E. This constraint was imposed by the delta function, δ(H[qi, pi]−E),
and this constraint makes the direct calculation of Ω often hard to do. When we took the Laplace transform of Ω
to get QN in the canonical ensemble, the integral over E removed this delta function constraint and left us with
an unconstrained integration over all of phase space. QN was thus easier to calculate than Ω. Now we are trying
to compute the quantum QN , and the constraint to a fixed number of particles N , imposed by the delta function
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δ(
∑
i ni − N), makes the sum over states in the occupation number representation hard to do. But when we take

the Laplace transform of QN to get L in the grand canonical ensemble, the sum over N removes this delta function
constraint and leaves us with an unconstrained sum over all sets of occupation numbers {ni}. So L is easier to
calculate than is QN . Since we know that the grand canonical ensemble is equivalent to the canonical ensemble in
the thermodynamic limit (i.e. the two ensembles have all the same thermodynamic properties), we are free to use the
grand canonical ensemble to do calculations, even if the true physical system has a fixed number of particles N .

Continuing with our calculation of L,

L =
∑
{ni}

∏
i

(
ze−βεi

)ni
=
∑
n1

∑
n2

· · ·
(
ze−βε1

)n1
(
ze−βε2

)n2 · · · =

[∑
n1

(
ze−βε1

)n1

][∑
n2

(
ze−βε2

)n2

]
· · · (3.4.7)

L =
∏
i

[∑
n

(
ze−βεi

)n]
(3.4.8)

For Fermi-Dirac statistics (i.e. for fermions), n = 0, 1 are the only possibilities for the occupation numbers.

⇒
1∑

n=0

(
ze−βεi

)n
= 1 + ze−βεi (3.4.9)

and so,

L =
∏
i

(
1 + ze−βεi

)
=
∏
i

(
1 + e−β(εi−µ)

)
for FD (3.4.10)

For Bose-Einstein statistics (i.e. for bosons), n = 0, 1, 2, . . . can be any integer.

⇒
∞∑
n=0

(
ze−βεi

)n
=

1

1− ze−βεi
assuming ze−βεi < 1 so the geometric series converges (3.4.11)

and so,

L =
∏
i

(
1

1− ze−βεi

)
=
∏
i

(
1

1− e−β(εi−µ)

)
for BE (3.4.12)

Now the grand potential is related to L by,

− Φ

kBT
=

pV

kBT
= lnL =


∑
i

ln
(

1 + e−β(εi−µ)
)

for FD

−
∑
i

ln
(

1− e−β(εi−µ)
)

for BE
(3.4.13)

We can combine the above into a single expression,

lnL = ±
∑
i

ln
(
1± ze−βεi

)
= ±

∑
i

ln
(

1± e−β(εi−µ)
)

where

{
+ is for FD
− is for BE

(3.4.14)

We can compare the above result to what one has classically. Let us continue to use the occupation number repre-
sentation where ni is the number of particles in single particle state i, and E =

∑
i εini and N =

∑
i ni. For classical

particles, ni can be any integer.
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If the classical particles are distinguishable, then for N particles with n1 in state 1, n2 in state 2, etc, the number of
microscopic states corresponding to a given set of occupation numbers {ni} would be,

N !

n1!n2! · · ·
= number of ways to distribute N particles such that ni are in state i (3.4.15)

So we would have,

QN =
∑
{ni}

δ
(∑

i

ni −N
) N !

n1!n2! · · ·
e−β

∑
i εini (3.4.16)

But now we recall Gibb’s correction factor 1/N ! for indistinguishable particles, so for the case of indistinguishable
particles we get,

QN =
∑
{ni}

δ
(∑

i

ni −N
) 1

n1!n2! · · ·
e−β

∑
i εini =

∑
{ni}

δ
(∑

i

ni −N
)∏

i

[
1

ni!

(
e−βεi

)ni

]
(3.4.17)

To evaluate, we now go to the grand canonical ensemble, as we did for the quantum case. Again using zN = z
∑

i ni =∏
i z
ni we have,

L =

∞∑
N=0

zNQN =

∞∑
N=0

∑
{ni}

δ
(∑

i

ni −N
)∏

i

[
zni
(
e−βεi

)ni

ni!

]
=
∑
{ni}

∏
i

[(
ze−βεi

)ni

ni!

]
(3.4.18)

=
∑
n1

∑
n2

· · ·
(
ze−βε1

)n1

n1!

(
ze−βε2

)n2

n2!
· · · =

[∑
n1

(
ze−βε1

)n1

n1!

][∑
n2

(
ze−βε2

)n2

n2!

]
· · · (3.4.19)

=
∏
i

[ ∞∑
n=0

(
ze−βεi

)n
n!

]
=
∏
i

exp
[
ze−βεi

]
= exp

[
z
∑
i

e−βεi

]
(3.4.20)

⇒ L = ezQ1 where Q1 =
∑
i

e−βεi is the single particle partition function (3.4.21)

and so,

lnL = zQ1 = z
∑
i

e−βεi =
∑
i

e−β(εi−µ) for classical particles (3.4.22)

Note: the above is just what we found from our earlier classical phase space calculation of L. There we had,

L =
∑
N

zNQN =
∑
N

zN
(
QN1
N !

)
= ezQ1 (3.4.23)

So we get the same classical result whether we label states the old way, or whether we label them the new way using
occupation numbers.

From L = ezQ1 we then have, as we found before,

pV

kBT
= lnL = zQ1

N = z
∂ lnL
∂z

= zQ1

 ⇒ pV

kBT
= N (3.4.24)
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and we get the ideal gas law, independent of what the single particle energy values εi are.

Note: From the above we see that the state {n1, n2, . . . } enters the partition function sum with a weight of unity for

the quantum calculation, but enters with a weight of
1

n1!n2! · · ·
in the classical calculation. Why is this?

The occupation number formulation is inherently designed to treat indistinguishable particles, because when we say
there are ni particles in single particle state i, we do no specify which particles these are, only the number. When
each particle is in a different single particle state, then 1/(n1!n2! · · · ) = 1, since all the ni = 1. So the difference only
occurs when more than one particle is in the same single particle state.

For a classical gas described by 6N dimensional continuous phase space, two particles being in the same single particle
state would mean two particles at the exact same values of (q,p). When we divide the partition function integration
by 1/N ! to avoid overcounting, this assumes that each particle is at a different point (qi,pi) in phase space. If two
particles are at the same (q,p), then the division by 1/N ! would be an over-correction of the counting. This because
we are correcting for the fact that the state in which particle 1 is at (q1,p1) and particle 2 is at (q2,p2) is exactly
the same state as when particle 1 is at (q2,p2) and particle 2 is at (q1,p1) and we don’t want to double count these.
However, when both particles 1 and 2 are at the same (q,p), then there is no double counting.

Classically, the probability that two particles will occur at the exact same (q,p) in the continuous phase space is
vanishingly small, since such situations have a vanishing weight when we do the partition function integration over
all of phase space,

∫
d3qid

3pi. Therefore we do not have to worry about it – we treat the indistinguishability of the
particles by simply dividing the partition function integration by 1/N !, which is OK because essentially each particle
is at a different (q,p).

However, when we discretize the single particle states to label them with a discrete index i, then we do have to
worry about the situation where more than one particle might be in the same single particle state. To deal with the
indistinguishability of the particles in this situation, we need to use the more complicated factor 1/(n1!n2! · · · ) when
we sum over all classical configurations {ni} in the occupation number representation.


