Unit 3-5: Average Occupation Numbers and Comparison of Quantum and Classical Ideal Gases

Average Occupation Numbers

To recap from the previous section, for identical non-interacting particles, we have for the quantum grand canonical

partition function,

Inf =+ Zln (1 + ze_ﬁef) = iZln (1 + e_ﬁ(“_“)) where + is for FD and — is for BE
i i

(3.5.1)

[Note: in some of our earlier formulas, it was 4+ for BE and — for FD; in the above equation it is the other way

around. So always be careful you know which is which!]

and for classical particles we had,

Inl = ZQI = ZZG_BQ — Ze—ﬁ(ei—u)

(3.5.2)

Note, the classical result of Eq. (3.5.2) is just equal to the quantum result of Eq. (3.5.1) in the limit z — 0. This is

because In(1 4 §) ~ ¢ for small §.

Quantum Average Occupation Numbers

Now, we had from Egs. (3.1.28) and (3.1.30) of Notes 3-1, that,

a=- (). w=(57),

Applying to the quantum L we get,
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Now, since,
N = Zni, we also have (N) = Z(nﬂ

and since

E= Z €Ny, we also have (F) = Ze&m)

(3.5.3)

(3.5.4)
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Comparing with Egs. (3.5.5) and (3.5.7) we conclude,

+ for FD, — for BE

Classical Average Occupation Numbers

Using the classical £ of Eq. (3.5.2) we have,

(N) = z% (Z ze5€i> = zZefﬁei =z

and
(E) = —% (2; ze’@“> = z;qzefﬁei

which leads to the conclusion,

(n;) = se—Pei — o= Blei—n) for classical particles

We plot these different (n) below.
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Comparison of the Classical and Quantum Ideal Gas

Classical phase space approach

We had,

_ = N _ = [ZQl}N _ 2y _
E—Zz QN—Z =e = InL=2z0Q:
N=0 N=0

N!

a (2) For FD, (n) — {

With z = (e — p) /kpT, we see that:

(1) For BE, (n) diverges as © — 0, i.e. when y — .

1 forx <0, ie. e
0 forx>0,ie e>pu’

(3) All expressions behave as (n) ~ e~ at large .

where () is the single particle partition function for a free point particle,
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(3.5.10)

(3.5.11)

(3.5.12)

(3.5.13)

(4) For FD, (n) goes from 1 to 0 over an interval of Az ~ O(1), i.e.
le — | ~ kpT.

(3.5.14)

(3.5.15)



A is the thermal wavelength. In the classical calculation, h was an arbitrary phase space constant.

Quantum sum over quantized energy levels in the classical limit

We now compare the above classical calculation to what we get using the occupation number formulation, in which
one sums over the single particle energy levels €;. Since we want to compare to the classical limit, we will use the
expression of Eq. (3.5.2) which we get as the z < 1 limit of the quantum result of Eq. (3.5.1).

Inf =z2Q = zZe*BEi (3.5.16)

Now, however, instead of integrating over continuous phase space to compute @1, we will sum over the quantized
energy levels of a quantum mechanical particle in a box of volume N = L3.

1 .
Taking periodic boundary conditions, the eigenstates of the particle in a box are given by ¢y (r) = —=e™*, with

VvV

ko = (27/L)ny, with n, integer and o = x,y, z, as discussed in Notes 3-3. The momentum of the state is p = hk

27.2
and the energy is ex = o We then have,

0, = Zefﬁek — Zefﬁrﬂiﬁ/zm (3.5.17)

k k
The spacing between the allowed values of k, is Ak = 2w /L, so we can write,
1 212 V 27,2
_ Ak 3 ,—Bh k" /2m ~ /dSk —Bh°k"/2m 5.1
D= (arp 20 @mp ] (3.518)

The approximation of the sum by the integral becomes exact in the thermodynamic limit V' — oo, where Ak — 0.

We can now do the Gaussian integration over k to get,

vV (2mm)\*? kpT\*? 2rmkpT\*? v
Q= LS P v (IR ) (3.5.19)
(2m)3 \ ph? 2mh? h? A3
with,
h2 1/2
A= <27rmk:T> the thermal wavelength (3.5.20)
B

This is exactly the same result for Q1 as in the classical phase space calculation of Eq.(3.5.15), provided we take the
classically arbitrary phase space constant h to be Planck’s constant.

Thus if we want the quantum mechanical calculation to agree with the classical calculation, in the classical limit, the
phase space constant A must be taken to be Planck’s constant.

Validity of the classical limit

We saw that the log of the quantum partition functions In £ (for FD or BE) of Eq. (3.5.1) agree with the classical
result of Eq. (3.5.2) in the limit 2 << 1. We now will see what is the physical meaning of this condition.

Classically:
Oln L 0
N = = —_— = . 021
z( % )T,V Z@z(ZQl) z2Q1 (3.5.21)
So,
N N 4 3 . . .
z = 0 = V)\ =n)®> where n = N/V is the density of particles (3.5.22)
1



Define n = 1/42, where / is roughly the average spacing between the particles. Then,

3
z:<2\>, and z <1 = ALK/ (3.5.23)

With & as Planck’s constant, we saw in Notes 3-3 that the thermal wavelength A is just the de Broglie wavelength of
a typical particle taken from a classical Maxwell velocity distribution at temperature 7.

= Quantum effects can be ignored, and classical results will give a good approximation whenever A < ¢, i.e. when
the quantum de Broglie wavelength of a typical particle is much less than the average spacing between the particles.

Since A ~ 1/ VT, as T decreases X increases. For a gas of fixed density n = 1 /03, quantum effects therefore become
more important as T decreases. At a fixed T', quantum effects become more important as the density n increases (so

¢ decreases).

= The classical limit is a high temperature, low density, limit.



