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Unit 3-6: The Quantized Harmonic Oscillator as Bosons, the Debye Model for the Specific Heat of a
Solid

Review

Partition function for non-interacting particles:

Quantum: lnL = ±
∑
i

ln
(

1± e−β(εi−µ)
)

= ±
∑
i

ln
(
1± ze−βεi

)
with + for FD, − for BE.

Classical: lnL =
∑
i

e−β(εi−µ) = z
∑
i

e−βεi

The sum is over all single particle states i – for the quantum system, these are the single particle energy eigenstates.

If εmin is the smallest single particle energy level, from the above we see that the quantum result → classical result in
the limit ze−βεmin � 1, since ln(1 + δ) ≈ δ for δ � 1. In this case ze−βεmin = eβ(µ−εmin) � 1 ⇒ β(µ− εmin)� 0. For
free point particles where εmin = 0, this means that the chemical potential is negative, µ < 0, in the classical limit.

Occupation numbers for non-interacting particles:

Quantum: 〈ni〉 =
1

z−1eβεi ± 1
=

1

eβ(εi−µ) ± 1
with + for FD, − for BE

Classical: 〈ni〉 = ze−βεi = e−β(εi−µ)

We see that quantum → classical for states i such that eβ(εi−µ) � 1 ⇒ (εi − µ)

kBT
� 0.

Since 〈ni〉 must always be positive, and for bosons 〈ni〉 = 1/[eβ(εi−µ) − 1], it follows that for bosons we must always
have (εi − µ) > 0 for any state i, or µ < εmin. For free particles with εmin = 0, we conclude that for bosons we must
always have µ < 0.

Harmonic Oscillator vs Boson

Recall our earlier analysis of the quantized harmonic oscillator at the end of Notes 3-1. With energy levels εn =
~ω(n+ 1/2) we found for the average excitation level,

〈n〉 =

∑
n

e−β~ωnn∑
n

e−β~ωn
=

− 1

~ω
∂

∂β

(∑
n

e−β~ωn

)
∑
n

e−β~ωn
= − 1

~ω
∂

∂β
ln

[
1

1− e−β~ω

]
=

1

~ω

[
~ωe−β~ω

1− e−β~ω

]
(3.6.1)

〈n〉 =
1

eβ~ω − 1
(3.6.2)

Compare this to the occupation number for a boson of energy ε,

〈n〉 =
1

eβ(ε−µ) − 1
(3.6.3)

We see that the average excitation level of the harmonic oscillator has exactly the same form as the average number
of bosons with energy ε = ~ω, if the boson chemical potential is taken to be µ = 0.

⇒ quantized harmonic oscillators obey the same statistics as bosons with µ = 0.

We say that excitation level n of the harmonic oscillator is the same as n quanta or n “particles” of excitation.
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For the harmonic oscillations involved in the elastic vibrations (sound modes) of solids, these quanta are called
phonons.

For the harmonic oscillations of electromagnetic waves, these quanta are called photons.

Sound modes in solids

ω = cs|k| with cs the speed of sound, k the wavevector of the sound mode

⇒ phonon modes 〈nk〉 =
1

eβ~csk − 1

Electromagnetic waves

ω = c|k| with c the speed of light, k the wavevector of the light wave

⇒ photon modes 〈nk〉 =
1

eβ~ck − 1

A physical way to understand why µ = 0 for the bosons which describe the excitations of harmonic oscillators, is
that these bosons are not conserved particles – they can be created or destroyed as the oscillator transitions between
different levels of excitation.

As an example, consider an electron being scattered by absorbing or emitting a phonon. We can regard that as a
chemical reaction, e + phonon ↔ e. From our discussion of chemical equilibrium, we know that the equilibrium
system of electrons and phonons should then satisfy the following relation for the chemical potentials: µe +µphonon =
µe ⇒ µphonon = 0.

Ionic Contribution to the Specific Heat of a Solid – the Debye Model

In Notes 2-13 we discussed the classical model for the contribution of ionic vibrations to the specific heat of a solid.
This led to the Law of Dulong and Petit. Since there are 6N harmonic degrees of freedom (3N momenta and 3N
normal coordinates), the equipartition theorem gave,

CV = (6N)

(
1

2
kB

)
= 3NkB ⇒ CV

V
= 3nkB with n =

N

V
the density of ions. (3.6.4)

In quantum mechanics, the 3N momenta and the 3N normal coordinates can be thought of as 3N harmonic oscillators.
These oscillations are the sound waves of vibration in the solid. We can approximate the dispersion relation of these
sound waves as,

ω = cs|k|, k is the wavevector, cs is the speed of sound (3.6.5)

and there are three different wave polarizations s for each k,

L -

a > be longitudinal
T
, n

x
-

transverse
g

k

T
2.

s = L longitudinal mode where the ion displacement is || to k (3.6.6)

s = T1, T2 transverse modes where the ion displacement is ⊥ to k (3.6.7)

For a solid of volume V = L3, we will take the sound modes to obey periodic boundary conditions. Then, just like
with particle-in-a-box wavefunctions, the wavevectors of the sound modes must satisfy,

kµ =

(
2π

L

)
nµ, nµ = 0,±1,±2, · · · ± integer µ = x, y, z (3.6.8)

For simplicity, we will assume that all three polarizations of sound waves have the same speed of sound cs.
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The total number of sound modes must equal the total number of oscillators, which is 3N . This sets an upper
bound on |k|. Let the maximum allowed value of |k| be denoted as kD, the Debye wavenumber. Oscillations with
k > kD would have wavelengths smaller than the spacing between the atoms of the solid, and so are not physical.
The maximum kD also means that the phonon modes have a maximum frequency, ωD = cskD, known as the Debye
frequency.

Since all the quantities we will want to compute depend on k only via |k| = ω/cs, it is convenient to define a phonon
density of states g(ω).

g(ω)dω is defined as the number of phonon modes, per unit volume, with frequencies between ω and ω + dω. With
g(ω) we can then compute for any quantity X that is independent of polarization s, and depends on wavevector only
via |k|,

1

V

3∑
s=1

kD∑
k=0

X(|k|) =

∫ ωD

0

dω g(ω)X(ω/cs) (3.6.9)

To find g(ω) let us first compute G(ω), the number of modes per unit volume with frequency less than or equal to ω.
Each mode corresponds to a wavevector k, with ω = cs|k|. The volume of k-space that corresponds to each allowed
k mode is (∆k)3, with ∆k = 2π/L the spacing between allowed values of any given component of k from Eq. (3.6.8).
So the number of modes with frequency ≤ ω is just the number of modes contained within a sphere in k-space of
radius k = ω/cs. For each k there are also 3 models of polarization, so we conclude that the number of modes per
unit volume is roughly,

k 

(Δk)3 
x 

y 

0 

nodes of grid lines locate allowed values of k 
each allowed value of k occupies volume (Δk)3 

number of boxes within sphere of radius k is the 
number of allowed k values with csk ≤ ω. 

G(ω) =
3

V

(volume of sphere of radius k = ω/cs)

(volume per mode)

=
3

V

4
3πk

3

(∆k)3
=

3

V

4
3πk

3

(2π/L)3
=

k3

2π2
=

ω3

2π2 c3s
(3.6.10)

This becomes exact as the system gets infinitely large with L→∞, and
so ∆k → 0.

The density of states per unit volume g(ω) is then obtained from
g(ω)dω = G(ω + dω)−G(ω), or,

g(ω) =
dG

dω
=

3

2π2

ω2

c3s
(3.6.11)

Now, as we said earlier, since there are only a finite number 3N of sound modes, there is a maximum phonon
frequency, ωD = cskD, the Debye frequency. The total number of modes per unit volume is thus 3N/V , and we can
now determine ωD by the condition,

3N

V
= G(ωD) =

∫ ωD

0

dω g(ω) =
1

2π2

ω3
D

c3s
(3.6.12)

⇒ ωD =

[
6π2c3s

N

V

]1/3
=
[
6π2c3sn

]1/3 ∼ n1/3 (3.6.13)

where n = N/V is the density of ions in the solid. The Debye wavenumber is then,

kD =
ωD
cs

=
[
6π2n

]1/3
(3.6.14)
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The Debye frequency ωD is the frequency of the most energetic phonons.

Now the average energy per unit volume due to the thermal excitation of phonons is,

〈E〉
V

=
1

V

∑
s

∑
k

~ωsk
[
〈nsk〉+ 1/2

]
=

∫ ωD

0

dω g(ω)~ω
[

1

eβ~ω − 1
+

1

2

]
(3.6.15)

The specific heat at constant volume, per unit volume, is then,

CV
V

=
1

V

(
∂〈E〉
∂T

)
V,N

=

∫ ωD

0

dω g(ω) ~ω
∂

∂T

[
1

eβ~ω − 1
+

1

2

]
=

∫ ωD

0

dω g(ω) ~ω

(
~ω
kBT 2

)
eβ~ω

[eβ~ω − 1]
2 (3.6.16)

=
3

2π2c3s

∫ ωD

0

dω ω2 kB

(
~ω
kBT

)2
eβ~ω

[eβ~ω − 1]
2 (3.6.17)

Now let x ≡ ~ω/kBT = β~ω. Then,

CV
V

=
3kB

2π2c3s

(
kBT

~

)3 ∫ xD

0

dx
x4 ex

[ex − 1]
2 where xD = β~ωD (3.6.18)

Consider the prefactor of the integral,

3kB
2π2c3s

(
kBT

~

)3

=
3kB
2π2

(
kBT

kDcs~

)3

(6π2n) = 9kBn

(
kBT

~ωD

)3

(3.6.19)

where we used k3D = 6π2n from Eq. (3.6.14), and ωD = cskD.

Define ΘD ≡ ~ωD/kB , the Debye temperature. We will see that ΘD sets the temperature scale for the appearance of
quantum effects.

The specific heat per volume is then,

CV
V

= 9nkB

(
T

ΘD

)3 ∫ xD

0

dx
x4 ex

[ex − 1]
2 (3.6.20)

where xD = β~ωD = ΘD/T .

Now we can evaluate the integral above in different limits.

1) At high temperatures, T � ΘD, xD = ΘD/T gets very small. So we can expand the integrand for small values of
x,

x4 ex

[ex − 1]
2 ≈

x4

x2
= x2 ⇒

∫ xD

0

dxx2 =
x3D
3

=
1

3

(
ΘD

T

)3

(3.6.21)

So at large T � ΘD, we have,

CV
V

= 9nkB

(
T

ΘD

)3
1

3

(
ΘD

T

)3

= 3nkB (3.6.22)

This is just the classical Law of Dulong and Petit! So the classical result remains correct provided T � ΘD, i.e. at
high temperatures.

Note, if we wanted to find the high temperature corrections to the Law of Dulong and Petit, all we need to do is to
continue the expansion of the integrand in Eq. (3.6.21) to higher order,

x4 ex

[ex − 1]
2 = x2 − x4

12
+

x6

240
+ · · · (I cheated and used Mathematica . . . ) (3.6.23)
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and then the integral becomes,

x3D
3
− x

5
D

60
+

x7D
1680

+ · · · = x3D
3

(
1− x2D

20
+
x4D
560

+ · · ·
)

=
1

3

(
ΘD

T

)3
[

1− 1

12

(
ΘD

T

)2

+
1

560

(
ΘD

T

)4

+ · · ·

]
(3.6.24)

and then,

CV
V

= 3nkB

[
1− 1

12

(
ΘD

T

)2

+
1

560

(
ΘD

T

)4

+ · · ·

]
(3.6.25)

2) At low temperatures, T � ΘD, xD = ΘD/T gets very large and so we can approximate the integral by taking the
upper limit xD →∞. We then have,

CV
V

= 9nkB

(
T

ΘD

)3 ∫ ∞
0

dx
x4 ex

[ex − 1]
2 (3.6.26)

The integral is now just a pure number – evaluating the integral gives (4/15)π4. So at low temperatures T � ΘD,
we have,

CV
V

=
12

5
π4 nkB

(
T

ΘD

)3

∝ T 3 (3.6.27)

The crossover between the high and low temperature limits is roughly T ∼ ΘD. In common solids, ΘD ∼ 100−300K,
so the effect of quantum mechanics on the specific heat of a solid can be seen at room temperature! This is an example
of a situation where we can see quantum effects in a macroscopic system at room temperature.

Law of Dulong and Petit

Debye Model
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Originally Einstein treated this problem quantum mechanically by assuming that all phonon modes had the same k-
independent frequency ω0. This is called the “Einstein model” and it gives a specific heat that decreases exponentially
as e−~ω0/kBT as T decreases. The Debye model is more physically correct.

This explanation of the specific heat of solids, as to why the Law of Dulong and Petit fails, was one of the early
successes of quantum mechanics.


