A further discussion of Problem Set 4, problem 1
When we compute the probability P(M) that M of the N particles are found on the right hand side of the box, does
it matter if the particles are distinguishable or indistinguishable? We consider both cases explicitly, and conclude that

both cases give the same result for P(M).

Distinguishable particles

The probability density pdis

with momena {p;} is,

for the system of distinguishable particles to have the N particles at coordinates {x;}
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Since the particles are non-interacting, H({z;,p;}) = Z HW (x;,p;), and this becomes,
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Since the particles are non-interacting, they are statistically independent, so the joint N-particle probability density
pd({z;,p;}) factors into a product of N single-particle probability densities p; (x, p). That is always true of indepen-
dent random variables — the joint probability distribution factors into a product of distributions for the individual
random variables.

Now we are interested only in the probability for the position, so we integrate over the momentum. Since H(M) =

P
o + U(z) we have
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The probability the particle will be found in the right hand side of the box is then,
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and the probability the particle will be found in the left hand side of the box is,
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Back now to the N-particle system, the probability that we have particles ¢ at positions x; is given by,

pY(zy, ..., xn) = pr(z1) - pr(zw) since we just integrate Eq. (5) over all the p; (10)

The probability that we will have the specific particles : = 1,..., M on the right side, and i = M +1,..., N on the
left side, is then obtained by integrating each of the p;(x) over the appropriate interval. We get,
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But if we want to know the probability that M of the particles are on the right side, and all the others are on the left
side, and we don’t care which are the ones that are on the right, then that probability is,
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since there are m ways to choose which M of the N particles to put on the right side.

Indistinguishable particles

Now suppose our particles are non-interacting but are indistinguishable. Now the N-particle probability density pdis
should be normalized so,
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The 1/N! is there because we do not want to over-count states, i.e. the configuration (z1,p1,x2,p2,...,ZN,PN) IS
the same as the configuration (x2,p2, 1,p1,...,ZN,PN). S0 p(x1,p1,...,ZN,pN) is the probability density that one

particle has coordinates (z1,p1), another has coordinates (x2,p2), and so on, and we don’t care which particle has
which coordinates because they are indistinguishable.

Comparing to Eq. (2) we can therefore write,
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And similarly, integrating over the momenta, the joint probability to find one particle at x1, another at x5, and so
on, is,
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Now suppose I have M red particles and N — M blue particles in the box. The red particles are indistinguishable from
each other, and the blue particles are indistinguishable from each other, but the red particles can be distinguished from

the blue particles. The probability that the red particles are at (x1,...,25) and the blue particles are at (za741,TN)
would be,
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Comparing to Eq. (15) we therefore have,
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If we recall that in the microcanonical ensemble, the probability to be in a particular state is 1/, then the above is
similar to Eq. (2.7.25) in our discussion of the entropy of mixing.

So, using Eq. (18), the probability P(M) that M of the indistinguishable particles are on the right and N — M are
on the left is,
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Now we have for the first term on the rightmost side of the above equation,
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while the second term is,
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Putting these results into Eq. (20) we get,
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This is exactly the same answer that we had for distinguishable particles!

In several places above we discussed doing integrals without double counting states for identical particles. To be
specific about what we mean, suppose the coordinates of the N particles are (z1,p1), (z2,p2), ... (xn,pn). Then if
we want to integrate without double counting, we should integrate the normalization condition as,
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That is, we first choose 1 € [0, L], then we should next choose x5 € [1, L], then x3 € [z, L], etc., so that the position
coordinates are ordered as 0 < x1 < a9 < --- < xy < L. This way if (x1,22) is in the region of integration, then
(z2,21) is not, and so we do not double count. Alternatively, we could integrate over z; € [0, L] for all x;, but then
we need to divide the integration by the factor N! because we are double counting.

To see this graphically, consider the case of just two particles. By the above, we want to integrate over z; € [0, L]
and x2 € [x1, L]. Graphically this is the shaded region shown below to the left. Alternatively, we could integrate over
x1 € [0, L] and x5 € [0, L], shown as the shaded region below to the right. But this region has twice the area as the
one to the left, so we would have to multiply by 1/2 = 1/2! to get the same answer as when we integrate over the
region to the left.
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If we had distinguishable particles, then (x1,x2) is a different state from (zo,z1) and we would integrate over the
region above to the right.

One then has (imagine we have already integrated over the p;),
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while
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This leads to
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p™ must be twice as large as pd*® because when we normalize we are really integrating p™ over only halve the

area as when we integrate p&is.
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For N particles, this generalizes to p 21,...,2n) = NpBS(zq,... 25).



