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Unit 1-2: Conditions for Equilibrium, Concavity of the Entropy

Thermal Equilibrium

Consider a system that is divided into two pieces by a wall.

wall
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E = E1 + E2

S = S1(E1, V1, N1) + S2(E2, V2, N2)

The wall is immoveable, impermeable (no particles can pass through it), and ther-
mally insulating (no heat can pass through it).

A thermally insulating wall is often called an adiabatic wall – no heat can flow across it. A diathermal wall is a wall
that can conduct heat.

As long as the wall is in place, the two subsystems cannot exchange energy, volume, or number of particles.

Suppose now that the wall is changed to a thermally conducting wall, so that the two subsystems can exchange energy.
What will be the new E1 and E2 after the system reaches the new equilibrium?

E = E1 +E2 is a fixed constant by conservation of the energy – system as a whole cannot exchange energy with the
external world.

But E1 and E2 = E − E1 can change.

E = E1 + E2 fixed ⇒ dE = dE1 + dE2 = 0 ⇒ dE1 = −dE2.

The change in entropy S = S1 + S2 as the system equilibrates is then,
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∂E1

)
V1,N1
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∂E2
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dE2 =
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− 1
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)
dE1 (1.2.1)

Now, by postulate II, equilibrium is achieved when S reaches its maximum. Viewing S as a function of E1 (with E2 =
E−E1), at the maximum we must have dS = 0, i.e., S will not change for small changes in dE1. By Eq. (1.2.1) we then
have,

Equilibrium
s Cs

•

A
±
-

Ei

dS = 0 ⇒ T1 = T2 (1.2.2)

The system will be in equilibrium when the two subsystems
have the same termperature.

Note: dS =

(
1

T1
− 1

T2

)
dE1 ⇒ if T1 > T2, then since the system evolves so that one always has dS > 0 (entropy

must increase as the system approaches equilibrium), then we must have dE1 < 0. So energy flows from subsystem
(1) to subsystem (2) (i.e. dE1 < 0 means E1 decreases, while dE2 = −dE2 > 0 means E2 increases). Thus energy
flows from the subsystem with higher temperature T1 to the subsystem with lower temperature T2. This agrees with
our expectation about temperature, that heat flows from hot to cold.

Mechanical Equilibrium

Now suppose the wall separating the two subsystems is both thermally conducting and it is allowed to slide so that
the volumes V1 and V2 can change.
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Still the total volume V = V1 + V2 is fixed, so V2 = V − V1 and dV2 = −dV1. We have,

E = E1 + E2 fixed ⇒ dE2 = −dE1

V = V1 + V2 fixed ⇒ dV2 = −dV1

We will also assume that the wall moves slowly so that no energy is dissipated in the friction of the moving wall.

As the system equilibrates, the change in entropy is,
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dV1 (1.2.5)

At equilibrium S is maximized so dS = 0 ⇒ T1 = T2 and p1 = p2 .

When the volume can change, equilibrium is reached when the pressures of the two subsystems are equal.

Chemical Equilibrium

Now suppose the wall is thermally conducting, can slide, and is also permeable to particles (particles can pass through
it). The total number of particles N = N1 +N2 remains fixed, but N1 and N2 = N −N1 may vary. We have,

E = E1 + E2 fixed ⇒ dE2 = −dE1

V = V1 + V2 fixed ⇒ dV2 = −dV1

N = N1 +N2 fixed ⇒ dN2 = −dN1

As the system equilibrates, the change in entropy is,
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At equilibrium S is maximized so dS = 0 ⇒ T1 = T2 and p1 = p1 and µ1 = µ2 .

When particles can be exchanged between the two subsystems, equilibrium is reached when the subsystems have the
same chemical potential.

The role of statistical mechanics is to calculate the entropy from the microscopic details of the system. Once the
entropy is known, then all thermodynamic properties follow.



3

Mechanical Equilibrium Revisited

For another way to look at the problem of thermal and mechanical equilibrium, consider again a system divided into
two subsystems by a wall. We will take the number of particles N1 and N2 to stay fixed, so we ignore them in the
calculation below

wall
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Initially the wall is adiabatic and immoveable. The subsystems are in equilibrium
with energy and volume E1 and V1 on the left, and E2 and V2 on the right.

Now the wall is allowed to both slide and to conduct heat.

E = E1 + E2 stays fixed ⇒ E2 = E − E1

V = V1 + V2 stays fixed ⇒ V2 = V − V1

The total entropy can thus be written as a function of E1 and V1,

S = S1(E1, V1) + S2(E − E1, V − V1) (1.2.9)

This entropy S is maximized when the system reached equilibrium. Thus equilibrium is when,
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∂S

∂V1

)
E1

=

(
∂S1

∂V1

)
E1

+

(
∂S2

∂V2

)
E2

∂V2
∂V1

=
p1
T1
− p2
T2
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⇒ T1 = T2 and p1 = p2. More specifically, since T and p are functions of E and V , we have,

T1(E1, V1) = T2(E − E1, V − V1) and p1(E1, V1) = p2(E − E1, V − V1) (1.2.12)

The above are two equations for the two unknowns E1 and V1. In principle one can therefore solve them to find the
new values of E1 and V1 (and hence also E2 = E − E1 and V2 = V − V1) in the new equilibrium state.

Now, however, consider the same initial situation, but now the wall is free to slide but still stays adiabatic. Since no
heat can be transported across the wall, we have d-Q1 = T1dS1 = 0 and d-Q2 = T2dS2 = 0. Thus dS1 = dS2 = 0. The
entropy of each subsystem stays fixed and cannot change. So,

dS1 =

(
∂S1

∂E1

)
V1

dE1 +

(
∂S1

∂V1

)
E1

dV1 =
1

T1
dE1 +

p1
T1
dV1 = 0 ⇒ dE1 = −p1dV1 (1.2.13)

Similarly,

dS2 =

(
∂S2

∂E2

)
V1

dE2 +

(
∂S2
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dV2 =
1

T2
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dV2 = 0 ⇒ dE2 = −p2dV2 (1.2.14)

The energy of each side can change only by doing mechanical work in moving the wall.

The total energy is still conserved, so E = E1 + E2 is fixed, and so dE2 = −dE1.

The total volume is still fixed, so V = V1 + V2 is fixed, and so dV2 = −dV1.

From dS1 = 0 we concluded dE1 = −p1dV1. From dS2 = 0 we concluded dE2 = −p2dV2 ⇒ (−dE1) = −p2(−dV1) ⇒
dE1 = −p2dV1. We thus conclude that equilibrium is achieved when p1 = p2, or when

p1(E1, V1) = p2(E − E1, V − V1) (1.2.15)

In equilibrium, the pressures of the two subsystems must be equal, so that the net force on the sliding wall is zero.
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But the above is just one equation for two unknowns, E1 and V1. Therefore, thermodynamics alone does not give
enough information to determine the new equilibrium state. The postulate about maximizing the entropy does not
help us here since the total entropy does not change, dS = dS1 + dS2 = 0, when the wall is adiabatic.

The new equilibrium state will depend on details of how energy is dissipated in the system, such as the viscosity of the
gases in each subsystem, or the friction associated with the sliding of the wall. Viscosity is the mechanism by which
the energy added to one subsystem via the mechanical work done by the wall goes into increasing the temperature of
that gas. If the gases had no viscosity, and the wall slid without any friction, the wall would just oscillate in simple
harmonic motion and no new equilibrium would ever be reached.

Concavity of the Entropy and Stability of Equilibrium (Callen Chapters 3 and 5)

Consider a container of gas, that is conceptually divided into two equal halves (i.e. there is no physical wall).
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If N and V are fixed to be the same on both sides, we expect that the energy
will also be equal on both sides. Call that energy E0. Then,

Stotal = S(2E0, 2V, 2N) = S(E0, V,N) + S(E0, V,N) = 2S(E0, V,N)

The second term represents the entropy of the total system which has energy
2E0, volume 2V , and number of particles 2N , while the third term represents
that entropy as the sum of the two half subsystems.

Consider now how S depends on E. If S were not a concave function of E (i.e. S(E) is convex ⇒ ∂2S/∂E2 > 0),
then the system would not be stable! We see this as follows. For a convex S(E) we have behavior as in the sketch below.
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Consider that a small amount of energy ∆E is transferred from
one side to the other, so that the entropy on one side is S(E0 +
∆E) and on the other side is S(E0 − ∆E). By the sketch on
the left, we see that the total system would then have a total
entropy Stotal = S(E0 + ∆E) + S(E0 −∆E) > 2S(E0).

Thus the system would increase its entropy by making this en-
ergy transfer of ∆E. Since systems in equilibrium always maxi-
mize their entropy, we would have to conclude that the original
assumed state where both halves have the same energy E0 could
not be a stable equilibrium.

If S(E) were convex, the system would thus prefer to have an inhomogeneous distribution of the energy. That violates
our notion of an equilibrium state where constant E, V , N are the only relevant macroscopic variables. If the system
preferred an inhomogeneous distribution of energy, we would have to be considering E(r). We therefore conclude that
a convex S(E) cannot lead to a spatially homogeneous stable equilibrium, and so S(E) must be a concave function.

If S(E) is concave, then we have the situation as in the sketch below.
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In this case we find 2S(E0) > S(E0 + ∆E) + S(E0 − ∆E)
and so transferring energy ∆E from one side of the system
to the other would decrease the total entropy, and so it does
not happen. The state with a spatially homogeneous energy
E0 will be the stable equilibrium state.

By similar arguments we can conclude that S must be a
concave function of all its variables.

d2S < 0 S is concave in all its variables (1.2.16)


