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Unit 1-3: The Gibbs-Duhem Relation, Entropy of the Ideal Gas, Energy Minimum Principle

The Gibbs-Duhen Relation

To recap from a previous lecture: If we regard the energy as the basic thermodynamic function, E(S, V,N), then we
defined the partial derivatives as:(

∂E

∂S

)
V,N

= T (S, V,N),

(
∂E

∂V

)
S,N

= −p(S, V,N),

(
∂E

∂N

)
S,V

= µ(S, V,N) (1.3.1)

One of our goals in this section is to show that T , p, and µ are not mutually independent quantities, but that there
is a constraint that relates one to the others. This is the Gibbs-Duhem relation.

We saw already in Eq. (1.1.5) that the entropy is a 1st order homogeneous function of its variables,

λS(E, V,N) = S(λE, λV, λN) (1.3.2)

Inverting this to write E in terms of S, we conclude that E is also a 1st order homogeneous function of its variables,

λE(S, V,N) = E(λS, λV, λN) (1.3.3)

Now lets differentiate the above equation with respect to S.

λ

(
∂E(S, V,N)

∂S

)
V,N

=

(
∂E(λS, λV, λN)

∂(λS)

)
λV,λN

(
∂(λS)

∂S

)
⇒ λT (S, V,N) = T (λS, λV, λN)λ (1.3.4)

and so,

T (S, V,N) = T (λS, λV, λN) (1.3.5)

Similarly, if we differentiate Eq. (1.3.3) with respect to V and N , and recall that p = −
(
∂E

∂V

)
S,N

and µ =

(
∂E

∂N

)
S,V

,

we conclude,

T (S, V,N) = T (λS, λV, λN)

p(S, V,N) = p(λS, λV, λN)

µ(S, V,N) = µ(λS, λV, λN)

 T, p, µ are homogeneous functions of the zeroth order (1.3.6)

(In general, any function that satisfies λnf(x, y, z) = f(λx, λy, λz) is said to be a homogeneous function of the nth
order.)

If we now let λ = 1/N , and use that in Eqs. (1.3.6), we get

T (S, V,N) = T

(
S

N
,
V

N
, 1

)
= T (s, v)

p(S, V,N) = p

(
S

N
,
V

N
, 1

)
= p(s, v)

µ(S, V,N) = µ

(
S

N
,
V

N
, 1

)
= µ(s, v)


these are called the equations of state (1.3.7)

Here, as before, s = S/N is the entropy per particle, and v = V/N is the volume per particle.

Thus we see that T , p, and µ are really functions of only two intensive variables, s and v.

Since the three variables T , p, µ are all functions of the two variables s and v, there must exist a relation among them
– T , p, µ are not all mutually independent.
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For example, one could imagine taking the two equations T = T (s, v) and p = p(s, v) and solving them for s and v in
terms of T and p. One could then take the third equation µ = µ(s, v), substitute in for s and v in terms of T and p,
and thus get µ(T, p). Thus µ is actually a function of T and p and can not be chosen independently of T and p.

The differential form for this constraint on T , p, µ is known as the Gibbs-Duhem relation. We derive it as follows.

Consider Eq. (1.3.3), λE(S, V,N) = E(λS, λV, λN), and differentiate with respect to λ. One gets,

E(S, V,N) =

(
∂E(λS, λV, λN)

∂(λS)

)
λV,λN

(
∂(λS)

∂λ

)
+

(
∂E(λS, λV, λN)

∂(λV )

)
λS,λN

(
∂(λV )

∂λ

)

+

(
∂E(λS, λV, λN)

∂(λN)

)
λS,λV

(
∂(λN)

∂λ

)
(1.3.8)

Which gives,

E(S, V,N) = T (λS, λV, λN)S − p(λS, λV, λN)V + µ(λS, λV, λN)N (1.3.9)

Now take λ = 1 to get,

E(S, V,N) = T (S, V,N)S − p(S, V,N)V + µ(S, V,N)N (1.3.10)

or

E = TS − pV + µN known as the Euler relation (1.3.11)

The Euler relation is a consequence of E(S, V,N) being a first order homogeneous function of its variables.

In the above we regard S, V , N , as the independent variables, and T , p, µ are functions of them.

If we divide Eq. (1.3.11) by the number of particles N we get,

u = Ts− pv + µ where u = E/N is the energy per particle (1.3.12)

Now from the fundamental definitions of T , p, µ we can write,

dE =

(
∂E

∂S

)
V,N

dS +

(
∂E

∂V

)
S,N

dV +

(
∂E

∂N

)
E,V

dN ⇒ dE = TdS − pdV + µdN (1.3.13)

But from the Euler relation of Eq. (1.3.11) we can write,

dE = TdS + SdT − pdV − V dp+ µdN +Ndµ (1.3.14)

Subtracting Eq. (1.3.13) from Eq. (1.3.14) we get

SdT − V dp+Ndµ = 0 or dµ = −sdT + vdp the Gibbs-Duhem relation (1.3.15)

One cannot vary T , p and µ independently. The Gibbs-Duhem relation gives the variation of one in terms of the
variation of the other two. If T is varied by dT , and p is varied by dp, then we cannot vary µ independent but dµ is
determined by the Gibbs-Duhem relation.

For the above derivation of the Gibbs-Duhem relation we utilized the energy formulation, where E(S, V,N) is the
fundamental thermodynamic potential. We can also derive a Gibbs-Duhem relation in the entropy formulation, where
S(E, V,N) is the fundamental thermodynamic potential.
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From the Euler relation of Eq. (1.3.11) we can rearrange terms to write,

S =
1

T
E +

p

T
V − µ

T
N (1.3.16)

Then,

dS = E d

(
1

T

)
+

1

T
dE + V d

( p
T

)
+
p

T
dV −N d

(µ
T

)
− µ

T
dN (1.3.17)

But from the definitions(
∂S

∂E

)
V,N

=
1

T
,

(
∂S

∂V

)
E,N

=
p

T
,

(
∂S

∂N

)
E,V

= −µ
T

(1.3.18)

we can write

dS =

(
∂S

∂E

)
V,N

dE +

(
∂S

∂V

)
E,N

dV +

(
∂S

∂N

)
E,V

dN =
1

T
dE +

p

T
dV − µ

T
dN (1.3.19)

Subtracting Eq. (1.3.19) from (1.3.17) we then get,

E d

(
1

T

)
+ V d

( p
T

)
−N d

(µ
T

)
= 0 or, dividing by N , d

(µ
T

)
= u d

(
1

T

)
+ v d

( p
T

)
(1.3.20)

Summary

The fundamental thermodynamic function, which determines all thermodynamic behavior, is the entropy,

S(E, V,N) as function of the extensive variables E, V , N

We can invert S to get an equivalent formulation in which the internal energy is the fundamental thermodynamic
function,

E(S, V,N) as a function of the extensive variables S, V , N

The partial derivatives of E give the equations of state,(
∂E

∂S

)
V,N

= T (S, V,N), −
(
∂E

∂V

)
E,N

= p(S, V,N),

(
∂E

∂N

)
E,V

= µ(S, V,N), (1.3.21)

If one knows the three equations of state, then one can use them to construct the fundamental thermodynamic function
using Euler’s relation,

E = TS − pV + µN

If one knows any two of the three equations of state, one can find the third by using the Gibbs-Duhem relation,

Ndµ = −SdT + V dp (1.3.22)

Example: The ideal monatomic gas

From experiment we know the following,

pV = NkBT ⇒ p

T
=
N

V
kB =

kB
v

(1.3.23)

E =
3

2
NkBT ⇒ 1

T
=

3

2
kB

N

E
=

3

2

kB
u

(1.3.24)
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where kB is Boltzmann’s constant. The above (p/T ) and (1/T ) are two of the three equations of state in the entropy
formulation. If we can find the third equation of state, (µ/T ), then we will have the entropy S via the Euler relation
in the entropy formulation,

S =
1

T
E +

p

T
V − µ

T
N (1.3.25)

We can get (µ/T ) from the Gibbs-Duhem relation in the entropy formulation,

d
(µ
T

)
= u d

(
1

T

)
+ v d

( p
T

)
= u d

(
3

2

kB
u

)
+ v d

(
kB
v

)
= −3

2

kB
u
du− kB

v
dv (1.3.26)

We can then integrate to get,(µ
T

)
−
(µ
T

)
0

= −3

2
kB ln

(
u

u0

)
− kB ln

(
v

v0

)
(1.3.27)

where u0 and v0 are some reference state, and (µ/T )0 is an unknown constant of integration.

Having found µ/T , we can return to the Euler relation, S =
1

T
E +

p

T
V − µ

T
N .

Using E =
3

2
NkBT ⇒

E

T
=

3

2
NkB and pV = NkBT ⇒

pV

T
= NkB , and the result of Eq. (1.3.27) for µ/T , we

get,

S =
E

T
+
pV

T
− µ

T
N =

3

2
NkB +NkB +

3

2
NkB ln

(
u

u0

)
+NkB ln

(
v

v0

)
−
(µ
T

)
0
N (1.3.28)

S =
5

2
NkB −

(µ
T

)
0
N +NkB ln

[(
u

u0

)3/2(
v

v0

)]
(1.3.29)

Now use u = E/N , v = V/N , u0 = E0/N0, and v0 = V0/N0, and one finally gets,

S(E, V,N) =
N

N0
S0 +NkB ln

[(
E

E0

)3/2(
V

V0

)(
N

N0

)−5/2
]

(1.3.30)

where S0 = 5
2N0kB −

(
µ
T

)
0
N0 is a constant.

So from experimental knowledge of two of the three equations of state (1/T ) and (p/T ) as functions of E, N , and V ,
we have derived the entropy S(E, V,N) of the ideal gas. All behaviors of the ideal gas can now be deduced from our
knowledge of S.

It is always good to see the same thing different ways! So, as an alternative approach, we could derive s = S/N as
follows.

From the Euler relation,

E = TS − pV + µN ⇒ S =
E

T
+
p

T
V − µ

T
N ⇒ s =

u

T
+
p

T
v − µ

T
(1.3.31)

where as before, u = E/N and v = V/N .

We then have,

ds =
1

T
du+

p

T
dv + u d

(
1

T

)
+ v d

( p
T

)
− d
(µ
T

)
(1.3.32)
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But the last three terms cancel due to the Gibbs-Duhem relation in the entropy formulation, Eq. (1.3.20). So we
have,

ds =
1

T
du+

p

T
dv (1.3.33)

Substitute in the experimental equations of state for (1/T ) = (3/2)(kB/u) and (p/T ) = (kB/v) and we get

ds =
3

2

kB
u
du+

kB
v
dv (1.3.34)

Now integrate to get,

s− s0 =
3

2
kB ln

(
u

u0

)
+ kB ln

(
v

v0

)
⇒ s = s0 + kB ln

[(
u

u0

)3/2(
v

v0

)]
(1.3.35)

Substitute in S = Ns, E = Nu, V = Nv, S0 = N0s0, E0 = N0u0, and V0 = N0v0 and we recover the same result for
S(E, V,N) as we found before.

Energy Minimum Principle

Postulate II stated that when constraints are removed, the equilibrium state will be the one that maximizes the
entropy S(E, V,N).

We saw that the entropy is a concave function of its variables. Let us denote the macroscopic variables as E and X,
where X stands for all other variables, but in order to draw pictures, we will assume X is a scalar quantity. The
concave surface S(E,X) is sketched below.

Consider the situation where the total E is held fixed at the value E0. Then if X is an unconstrained degree of
freedom, it will take in equilibrium that value X0 that maximizes S for the given fixed E0. This is determined by the
intersection of the surface S(E,X) with the plane at fixed E = E0, as in the sketch below (see Callen Fig. 5.1).

X0 is given by the point A in the sketch, that maximizes S along this
curve of intersection. The entropy at point A is given by,

S0 = max
X

[S(E0, X)]

Suppose now an alternative situation in which the total entropy S is held fixed at the value S0 found in the previous
sketch. Then if X is an unconstrained degree of freedom, we see that the equilibrium state at S0 and E0 will
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correspond to minimizing the energy with respect to X, along the curve of intersection between the surface S(E,X)
and the plane of constant S = S0, as in the sketch below (see Callen Fig. 5.2).

E0 = min
X

[E(S0, X)]

We thus have two contrasting formulations:

Entropy formulation: the fundamental thermodynamic function is S(E,X1, X2, . . . ). If a constraint on some Xi is
removed, then when the system reaches equilibrium Xi will take the value that maximizes S at the fixed total energy
E and fixed Xj , j 6= i. In equilibrium, d2S < 0, S is concave.

Energy formulation: the fundamental thermodynamic function is E(S,X1, X2, . . . ). If a constraint on some Xi is
removed, then when the system reaches equilibrium Xi will take the value that minimizes E at the fixed total entropy
S and fixed Xj , j 6= i. In equilibrium d2E > 0, E is convex.

Note, the goal in the above discussion is to try and characterize the same equilibrium point A, given by S0 and E0,
within the two different formulations, S(E,X) and E(S,X).

Within the entropy formulation S(E,X), A is characterized as the point where E = E0 and (∂S/∂X)E = 0, i.e. A
is an extremum of the curve S(E0, X) as a function of X; and also (∂S2/∂X2)E < 0, i.e. the extremum at A is a
maximum of the entropy.

Within the energy formulation E(S,X), A is characterized as the point where S = S0 and (∂E/∂X)S = 0, i.e. A
is an extremum of the curve E(S0, X) as a function of X; and also (∂E2/∂X2)S > 0, i.e. the extremum at A is a
minimum of the energy.

The above is a graphic way to show how the Energy Minimum Principle follows as a consequence of the Entropy
Maximum Principle. We can also show it algebraically, as follows below.

From the Entropy Maximum Principle we have for the point A on the curve S(E0, X),(
∂S

∂X

)
E

= 0 and

(
∂2S

∂X2

)
E

< 0 (1.3.36)

We now wish to see what this implies for the behavior of E(S0, X) at point A. For convenience, let us define χ as the
conjugate variable to X,

χ ≡
(
∂E

∂X

)
S

(1.3.37)

From a general result for partial derivatives given in Eq. (1.8.16), we can write,(
∂E

∂X

)
S

(
∂X

∂S

)
E

(
∂S

∂E

)
X

= −1 (1.3.38)

from which we have,

χ =

(
∂E

∂X

)
S

=
−1(

∂X

∂S

)
E

(
∂S

∂E

)
X

= −

(
∂S

∂X

)
E(

∂S

∂E

)
X

(1.3.39)
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where last step comes from the general result for partial derivatives given in Eq. (1.8.20). Then, since

(
∂S

∂E

)
X

=
1

T
,

we have,

χ = −T
(
∂S

∂X

)
E

and since from Eq. (1.3.36)

(
∂S

∂X

)
E

= 0 we conclude χ =

(
∂E

∂X

)
S

= 0 at point A.

(1.3.40)

So the point A is an extremum of the curve E(S0, X). Now we want to show it is a minimum. We want to know the
sign of,(

∂2E

∂X2

)
S

=

(
∂χ

∂X

)
S

(1.3.41)

Since χ =

(
∂E

∂X

)
S

, and E is E(S,X), we can regard χ as a function of S and X, i.e. χ(S,X). But we also have

entropy as a function of E and X, i.e. S(E,X). So we can then write χ as χ(S(E,X), X), and regard χ as a function
of E and X. We then have by the chain rule,(

∂χ

∂X

)
S

=

(
∂χ

∂E

)
X

(
∂E

∂X

)
S

+

(
∂χ

∂X

)
E

=

(
∂χ

∂E

)
X

χ+

(
∂χ

∂X

)
E

=

(
∂χ

∂X

)
E

since χ = 0 at A. (1.3.42)

Now we can write, using Eq. (1.3.39), we have,

(
∂χ

∂X

)
E

=
∂

∂X

−
(
∂S

∂X

)
E(

∂S

∂E

)
X


E

= −

(
∂2S

∂X2

)
E(

∂S

∂E

)
X

+

(
∂S

∂X

)
E

(
∂2S

∂X∂E

)
(
∂S

∂E

)2
X

(1.3.43)

But, as we used before, at point A we have from Eq. (1.3.36) that

(
∂S

∂X

)
E

= 0. Using also that

(
∂S

∂E

)
X

=
1

T
, we

then have from Eqs. (1.3.41), (1.3.42), and (1.3.43),(
∂2E

∂X2

)
S

=

(
∂χ

∂X

)
S

=

(
∂χ

∂X

)
E

= −T
(
∂2S

∂X2

)
E

> 0 (1.3.44)

where the last step follows from Eq. (1.3.36), that

(
∂2S

∂X2

)
E

< 0.

So we conclude that

(
∂2E

∂X2

)
S

> 0, and thus E(S0, X) is a minimum at the extremum point A.

This completes the algebraic proof of the Energy Minimum Principle.

We can also demonstrate the correctness of the Energy Minimum Principle by a physical argument. To quote from
Callen, “Assume, then, that the system is in equilibrium but that the energy does not have its smallest possible value
consistent with the given entropy. We could then withdraw energy from the system (in the form of work) maintaining
the entropy constant, and we could thereafter return this energy to the system in the form of heat. The entropy of
the system would increase (d-Q = TdS), and the system would be restored to its original energy but with an increased
entropy. This is inconsistent with the principle that the initial equilibrium state is the state of maximum entropy!
Hence we are forced to conclude that the original equilibrium state must have had minimum energy consistent with
the prescribed entropy.”


