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Unit 2-4: The Microcanonical Ensemble and Entropy

Density of States g(E) and Number of States Ω(E)

We saw that the microcanonical ensemble, at constant total energy E, assigned equal weight to all systems on the
surface of constant energy in phase space, defined by H[qi, pi] = E.

To count the number of such states on the constant energy surface, we define the density of states g(E), which is the
number of states of total energy E per unit energy,

g(E) ≡
∫
dqidpi
h3N

δ(H[qi, pi]− E) (2.4.1)

Here dqidpi stands for

3N∏
i=1

dqidpi, i.e. we integrate over all 6N of the phase space coordinates. The delta function

means we count only coordinates that lie on the surface of constant energy E.

The constant h has units of qipi and is introduced so that g(E) will have the units of 1/energy. You can think of h
as the grid width in discretizing the continuous phase space into a grid of discrete cells, each with phase space volume
h3N . Such a discretization is useful since it will allow us to count states, something that is conceptually more difficult
when states are specified by continuous coordinates. Classically, h should be small but is otherwise totally arbitrary,
and so we expect our thermodynamic results should not depend on its value (though later we will see that this is not
always so!). Quantum mechanically we will see that h turns out to be Planck’s constant (recall, Planck’s constant
has the units of energy · time which is the same as the units of qipi).

We can now define the number of states Ω in a shell of thickness ∆E about the surface of constant energy E,

Ω(E, V,N) =

E+∆E/2∫
E−∆E/2

dE′ g(E′) since g(E) has units 1/energy, Ω is a dimensionless pure number (2.4.2)

As with h, the energy width ∆E is arbitrary, and so our thermodynamic results should not depend on the value of
∆E. We will assume it to be in the range E/N < ∆E � E, so it is larger than the energy per particle but much
smaller than the total energy. One can think of ∆E as representing the finite accuracy with which one knows the
total energy E. Both h and ∆E are introduced so that Ω is a dimensionless pure number that we can think of as
being the number of microscopic states that are occupied in the microcanonical ensemble at total energy E.

Number of States for the Ideal Gas

We will now compute Ω(E,N, V ) for the ideal gas of non-interacting point particles. For this system the energy is
entirely the kinetic energy of the particles, and so the Hamiltonian is,

H =

3N∑
i=1

p2
i

2m
(2.4.3)
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We see from H that the surface of constant energy E is just the surface on
which the momenta {pi} satisfy the constraint

∑3N
i=1 p

2
i = 2mE. This con-

straint defines the surface of a 3N dimensional sphere centered at the origin

in momentum space. The radius of that sphere is
√∑3N

i=1 p
2
i =

√
2mE. We

therefore have for the density of states,

g(E) =
1

h3N

3N∏
i=1

∫ L

0

dqi

∫ ∞
−∞
dpi δ

 3N∑
j=1

p2
j

2m
− E

 (2.4.4)

where we assume the system is confined to a box of length L. Since the box volume is V = L3, doing the integration
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over the spatial coordinates {qi} gives,

g(E) =
V N

h3N

3N∏
i=1

∫ ∞
−∞
dpi δ

 3N∑
j=1

p2
j

2m
− E

 (2.4.5)

Let us now convert the integral over the {pi} to spherical coordinates. This gives,

3N∏
i=1

∫ ∞
−∞
dpi =

∫
Ω3N

dΩ3N

∫ ∞
0

dPP 3N−1 (2.4.6)

where P =
√∑3N

i=1 p
2
i is the magnitude of the 3N dimensional vector P = (p1, p2, . . . , p3N ), and Ω3N is the 3N dimen-

sional solid angle giving the orientation of the vector P (don’t confuse Ω3N with the number of states Ω(E, V,N)!).
We then get,

g(E) =
V N

h3N

∫
Ω3N

dΩ3N

∫ ∞
0

dP P 3N−1 δ

(
P 2

2m
− E

)
(2.4.7)

=
V N

h3N
S3N

∫ ∞
0

dP P 3N−1
δ
(
P −

√
2mE

)
(P/m)

(2.4.8)

=
V N

h3N
S3N m(2mE)

3N−2
2 (2.4.9)

Here S3N is the area of the surface of a sphere with unit radius in 3N -dimensional space, and we converted the delta
function in the integrand using the result that for a monotonic increasing function f(x),

δ(f(x)) =
δ(x− x0)

f ′(x0)
where f(x0) = 0 and f ′(x) = df/dx. (2.4.10)

[Note: for the more general case where f(x) is any continuous function: δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

, where the xi are

the zeros of f(x), i.e. f(xi) = 0.]

From appendix C of Pathria and Beale we have Sd =
2πd/2

Γ(d/2)
, where Γ(x) is the gamma function that obeys Γ(n) =

(n− 1)! for integer n. So, S3N =
2π3N/2(
3N
2 − 1

)
!
, and we have,

g(E) =
V N

h3N

2π3N/2(
3N
2 − 1

)
!
m

(2mE)3N/2

2mE
(2.4.11)

and so

g(E) =
V N

h3N

(2πmE)3N/2(
3N
2 − 1

)
!

1

E
(2.4.12)

Integrating g(E) over a shell of energy thickness ∆E then gives for the number of states,

Ω(E) =

E+∆E/2∫
E−∆E/2

dE′ g(E′) ≈ g(E)∆E (2.4.13)
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Ω(E) =
V N

h3N

(2πmE)3N/2(
3N
2 − 1

)
!

∆E

E
(2.4.14)

Note, for convenience we write the number of states as Ω(E) rather than the more complete Ω(E, V,N).

For large N ∼ 1023, Ω(E) ∼ E(3N/2)−1 is a very rapidly increasing function of the total energy E!

Number of States Ω(E) and the Entropy S(E)

We will now argue that Ω(E) is related to the entropy S(E) of the system.

Consider two subsystems separated by a wall.
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The total energy ET = E1 + E2 is conserved.

Let Ω1(E1) = g1(E1)∆E be the number of states at energy E1 for system 1 and
Ω2(E2) = g2(E2)∆E be the number of states at energy E2 of system 2.

When the wall is thermally insulating, and E1 and E2 are fixed, then the number
of states available to the total system is just the product,

ΩT = Ω1(E1)Ω2(E2) (2.4.15)

since system 1 can be in any one of Ω1(E1) states, and system 2 can be in any one of Ω2(E2) states.

Now suppose the wall is thermally conducting so that energy can be transferred between the two systems. Then E1

can vary but ET = E1 + E2 stays fixed. What will be the value of E1 when the system comes into equlibrium?

In this case the number of states available to the total system is obtained just by adding up the terms as in Eq. (2.4.15),
but now considering all possible divisions of the energy between the two systems,

ΩT (ET ) =

∫ ET

0

dE1

∆E
Ω1(E1) Ω2(ET − E1) (2.4.16)

Consider the behavior of the integrand:

For large N1, Ω1(E1) is a rapidly increasing function of E1.
For large N2, Ω2(E2) is a rapidly increasing function of E2.
So Ω2(ET − E1) is a rapidly decreasing function of E1.

The product Ω1(E1)Ω2(ET −E1) therefore has a sharp maximum at some particular value of E1, as illustrated in the
sketches below where I took N1 = N2 = 20. As N1 and N2 increase, Ω1 and Ω2 become ever more sharply varying,
and the product Ω1Ω2 becomes ever more sharply peaked.

E1

Ω1(E1) Ω2(ET − E1)

E1

Ω1(E1) Ω2(ET − E1)
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In the microcanonical ensemble all states with total energy ET are equally likely. So the probability that the total
system has its energy divided with E1 in system 1 and ET − E1 in system 2 is just proportional to the number of
states that have this particular division of energy, i.e. Ω1(E1)Ω2(ET − E1). The most likely value for the energy E1

is therefore the value Ē1 that maximizes Ω1(E1)Ω2(ET −E1). Since this quantity, as argued above, has a very sharp
maximum at Ē1 as N gets large, then one is almost certain to find E1 = Ē1 and the probability to find any other
value of E1 will vanish as the size of the system N gets infinitely large.

What condition determines this maximizing value of E1? As usual, it is given by the value where the derivative of
Ω1(E1)Ω2(ET − E1) vanishes,

∂

∂E1
[Ω1(E1)Ω2(ET − E1)] = 0 (2.4.17)

⇒
(
∂Ω1(E1)

∂E1

)
Ω2(ET − E1) + Ω1(E1)

(
∂Ω2(ET − E1)

∂E1

)
= 0 (2.4.18)

⇒
(
∂Ω1(E1)

∂E1

)
Ω2(ET − E1)− Ω1(E1)

(
∂Ω2(ET − E1)

∂E2

)
= 0 (2.4.19)

⇒ 1

Ω1

∂Ω1(E1)

∂E1
=

1

Ω2

∂Ω2(ET − E1)

∂E2
⇒ ∂

∂E1
(ln Ω1) =

∂

∂E2
(ln Ω2) (2.4.20)

But from thermodynamics we know that the equilibrium value of E1 will be determined by the condition that,

1

T1
=

(
∂S1

∂E1

)
=

(
∂S2

∂E2

)
=

1

T2
(2.4.21)

Comparing Eq. (2.4.20) with Eq. (2.4.21), and following Boltzmann, we therefore identify

S(E) ∝ ln Ω(E) (2.4.22)

as the entropy.

Since the relation between thermodynamics and mechanics should be fundamental, Boltzmann postulated that the
proportionality constant in the above equation should be a universal constant of nature, and not depend on the
particular system being considered. That constant is Boltzmann’s constant kB . So finally we have for the entropy,

S(E) = kB ln Ω(E) (2.4.23)

Looking at Eq. (2.4.14) giving Ω(E) for the ideal gas, we see as expected that S(E) is a monotonic increasing function
of E.


