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Unit 2-5: Entropy of the Ideal Gas in the Microcanonical Ensemble

From the last section we had for the number of states for the ideal gas,
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Using S = kB ln Ω, we then get for the entropy,
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For large N we can use Stirling’s approximation for the factorial, lnN ! ≈ N lnN −N (we will derive this later). We
then get,
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where we used the Taylor series to expand ln(1 + ε) ≈ ε in the last step. We now have,
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Recall, we took ∆E ∼ E/N , so ln

[
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]
∼ − lnN . Since we are interested in the thermodynamic limit of N → ∞,

we can drop all but the leading terms that scale proportional to N , and we then get,
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since as N →∞ the terms ln(3N/2) and ln(∆E/E) become negligible.

Note, our result does not depend on ∆E, just as we desired.

With the above expression for the entropy, we can recover some familiar results,
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So far, so good!

But there is a problem. S, as given by Eq. (2.5.7) above, is not extensive. If we take E → 2E, V → 2V , and N → 2N ,
we do not get S → 2S. It is the lnV term in Eq. (2.5.7) that spoils the desired extensivity. When we double E, V ,
and N , the argument of the logarithm doubles, whereas we would need it to stay constant if S is to double.
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We can compare Eq. (2.5.7) to the entropy for the ideal gas that we found in Notes 1-3, where we used the experimental
pV = NkBT and E = 3

2NkBT together with the Gibbs-Duhem relation to get,
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where N0, S0, V0 and E0 are all constants. The result above in Eq. (2.5.10) is properly extensive. Compared to
Eq. (2.5.7), the entropy of Eq. (2.5.10) has an extra factor of N−1 inside the logarithm, which makes the argument
of the logarithm stay constant as E, V , and N are all doubled, as is needed if S is to double and so be extensive.

Note: The Gibbs-Duhem relation was derived assuming the entropy S was extensive. Hence it should not be surprising
the entropy of Eq. (2.5.10), derived using the Gibbs-Duhem relation, is indeed extensive.

What is the physical reason that the entropy of Eq. (2.5.7), as obtained in the microcanonical ensemble, fails to be
extensive?

Note, the entropy of Eq. (2.5.7) is not properly additive over subsystems, as is the entropy of Eq. (2.5.10). That is,
the entropy of Eq. (2.5.7) does not obey the desired condition,

λS(E, V,N) = S(λE, λV, λN) (2.5.11)

that it must. Rather Eq. (2.5.7) obeys the relation λS(E, V,N) = S(λE, V, λN).

What is the origin of this problem?


