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Unit 2-8: The Canonical Ensemble

Consider a system of interest in contact with a thermal reservoir – i.e. the system of interest is separated from the
reservoir by a fixed, impermeable, but thermally conducting wall. We will refer to this as the “combined system.”
Let E be the energy of the system of interest and ET −E be the energy of the reservoir. The total energy ET of the
combined system plus reservoir is fixed. We now wish to compute the probability that the system of interest will be
found to have energy E.

Consider the microcanonical ensemble for the combined system. The number of states available to the combined
system at energy ET is,

ΩT (ET ) =

∫ ET

0

dE

∆E
Ω(E)ΩR(ET − E) (2.8.1)

Where Ω(E) is the number of states available to the system of interest and ΩR(ET − E) is the number of states
available to the reservoir.

Since all states of the combined system are assumed to be equally likely in the microcanonical ensemble, then the
probability for the system of interest to have energy E is proportional to the number of states of the combined system
for which the system of interest has energy E,

P(E) ∝ Ω(E)ΩR(ET − E) = Ω(E)eSR(ET−E)/kB (2.8.2)

where we used SR = kB ln ΩR is the entropy of the reservoir.

Since the reservoir is large, E � ET , we can expand,

ΩR(ET − E) = exp

{
SR(ET − E)

kB

}
= exp

{
1

kB

[
SR(ET )−

(
∂SR
∂ER

)∣∣∣∣
ER=ET

E + · · ·

]}
(2.8.3)

= exp

{
1

kB

[
SR(ET )− E

TR
+ · · ·

]}
= const e−E/kBT (2.8.4)

Here we used (∂SR/∂ER)|ET
= 1/TR. In the last step we used that the temperature of the system of interest must be

equal to that of the reservoir, T = TR, because the two are in equilibrium, and also that temperature of the reservoir
TR is independent of how much energy it shares with the system of interest by definition of its being a reservoir (i.e.
TR(ET ) = TR(ET − E) is independent of the energy E of the system of interest). And lastly that eSR(ET )/kB is a
constant independent of E.

So finally we conclude that the probability that the system of interest has energy E is proportional to,

P(E) ∝ Ω(E)e−E/kBT (2.8.5)

Normalizing P(E) so that
∫
dE P(E) = 1, we have for the probability density for the system of interest to have energy

E,

P(E) =
Ω(E) e−E/kBT

∆E QN (T, V )
with QN (T, V ) ≡

∫
dE

∆E
Ω(E) e−E/kBT (2.8.6)

where QN (T, V ) is called the canonical partition function.

We will soon see that the partition function is the key quantity of the canonical ensemble, from which we can find
the Helmhotz free energy, and hence all thermodynamic properties. [Note: in some texts, the partition function is
denoted as Z. We will use the notation Q of Pathria and Beale.]
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Using the density of states,

g(E) =
1

N !

1

h3N

∫
dqidpi δ (H[qi, pi]− E) with Ω(E) = g(E)∆E (2.8.7)

we can rewrite the above as,

P(E) =
g(E) e−E/kBT

QN (T, V )
and QN (T, V ) =

∫
dE g(E) e−E/kBT (2.8.8)

Inserting g(E) into the above expression for the partition function we get,

QN (T, V ) =

∫
dE

1

N !

1

h3N

∫
dqidpi δ (H[qi, pi]− E) e−E/kBT (2.8.9)

Interchanging the order of the integrations on E and on the {qi, pi}, we can do the integral over E trivially using the
delta function to get,

QN (T, V ) =
1

N !

1

h3N

∫
dqidpi e−H[qi,pi]/kBT (2.8.10)

Although they are equivalent, note the important distinction between the expressions forQN (T, V ) given in Eqs. (2.8.6)
and (2.8.8) from that given in Eq. (2.8.10). In Eqs. (2.8.6) and (2.8.8) one first needs to compute the microcanonical
number of states Ω(E) or the density states g(E). This involves doing the constrained integration over phase space
given in Eq. (2.8.7), where the constraint restricts one to the constant energy surface H[qi, pi] = E. Carrying out
the integration subject to such a constraint is in general not easy. However in Eq. (2.8.10) we compute the partition
function by carrying out an unconstrained integration over all of phase space, weighting each point in phase space by
its Boltzmann factor e−H/kBT . Computing QN (T, V ) by using Eq. (2.8.10) is therefore, in general, much easier to
carry out. Because it is usually much easier to compute QN (T, V ) using Eq. (2.8.10) than it is to compute Ω(E), this
is why one usually prefers to work in the canonical ensemble rather than the microcanonical ensemble.

Now, P(E) is the probability density per unit energy that the system of interest (henceforth just “the system”) is
found to have energy E. So P(E)∆E is the probability that the system has energy E′ within the range E −∆E/2 ≤
E′ ≤ E+ ∆E/2. Within this range there are Ω(E) possible microscopic states for the system and, by the assumption
of the microcanonical ensemble, each of these is equally likely. So the probability that the system is in any particular
one of those states is just,

P(E) ∆E

Ω(E)
=

e−E/kBT

QN (T, V )
(2.8.11)

Each of those states, by our method of counting, occupies a volume h3N in phase space. So we can write for the
probability density per unit volume of phase space, at point {qi, pi} in phase space, is,

ρ(qi, pi) =
e−H[qi,pi]/kBT

h3N QN (T, V )
=

e−H[qi,pi]/kBT

1

N !

∫
dqjdpj e−H[qj ,pj ]/kBT

(2.8.12)

Note, ρ(qi, pi) is normalized so that 1
N !

∫
dqidpj ρ(qi, pi) = 1, where the prefactor 1/N ! is because we have identical

particles and don’t want to over count phase space.

If we wished to normalize so that
∫
dqidpi ρ(qi, pi) = 1, then we should absorb the 1/N ! factor into ρ so that

ρ(qi, pi) =
e−H[qi,pi]/kBT∫

dqjdpj e−H[qj ,pj ]/kBT
(2.8.13)

Referring back to Notes 2-2, we see that the expression for ρ(qi, pi) of Eq. (2.8.13) is just the density matrix for the
canonical ensemble.
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The above discussion is illustrated in the sketch below.

Probability density per unit phase space 
for system to be at {q ,p }

Probability for system to lie anywhere 
within slab of thickness   E at energy E

Surface of constant energy E +   E/2

Surface of constant energy E -   E/2

Number of states within slab
of thickness   E at energy E

Probability for system to be in
a particular state in the slab of
thickness    E at energy E

÷¥÷÷¥ "
in:÷÷÷÷

The above discussion was given in terms of a system, such as a collection of classical particles, where phase space
is a continuum and the possible energies E of the system span a continuous range of values. Consider, instead, the
case where the states of the system are labeled by a discrete index i, and so the possible energies of the system are
a discrete set of values Ei. The corresponding results for the probability that the system has energy Ei, and for the
partition function are,

P(Ei) =
Ω(Ei) e−Ei/kBT

QN (T, V )
with QN (T, V ) =

∑
Ei

Ω(Ei) e−Ei/kBT and
∑
Ei

P(Ei) = 1 (2.8.14)

Here P(Ei) is a probability rather than a probability density, and the sums are over the different distinct values of
Ei.

Since Ω(Ei) is just the number of the discrete states that have energy Ei, we can write,

QN (T, V ) =
∑
Ei

Ω(Ei) e−Ei/kB/T =
∑
i

e−Ei/kBT (2.8.15)

Note that in the first sum we are summing over the allowed values of the energy Ei, and multiplying each term by
the number of states Ω(Ei) that have that energy. In the second sum we are summing over the individual states i
directly.

Since all states which have a given value of Ei are equally likely, and the number of such states are Ω(Ei), then the
probability for the system to be in any particular one of those states i is just,

Pi =
P(Ei)

Ω(Ei)
=

e−Ei/kBT

QN (T, V )
=

e−Ei/kBT∑
j

e−Ej/kBT
with

∑
i

Pi = 1 (2.8.16)

In the microcanonical ensemble, the system energy E is fixed, and the system entropy is given by S = kB ln Ω(E).
In the canonical ensemble, the system energy E is not fixed, but fluctuates according to a probability distribution
set by the fixed temperature T . The temperature determines the average energy 〈E〉. The canonical ensemble does
not depend on any details of the reservoir, except for the assumption that the reservoir is very much larger than the
system.

In thermodynamics, in the entropy formulation, we saw that when one wishes to use 1/T as the thermodynamic
variable instead of the energy E, then the thermodynamic potential to use is the Legendre transform of S with
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respect to E, which is −A/T where A(T, V,N) is the Helmholtz free energy. We will now see that there is a direct
connection between A(T, V,N) and the canonical partition function QN (T, V ).

In the canonical ensemble, the average energy of the system is given by,

〈E〉 =

∫
dE P(E)E, with P(E) =

g(E) e−E/kBT

QN (T, V )
and QN (T, V ) =

∫
dE g(E) e−E/kBT (2.8.17)

Defining β = 1/kBT , we then have,

〈E〉 =

∫
dE g(E) e−βE E∫
dE g(E) e−βE

=

− ∂

∂β

[∫
dE g(E) e−βE

]
∫
dE g(E) e−βE

= − ∂

∂β

(
ln

[∫
dE g(E) e−βE

])
V,N

(2.8.18)

so

〈E〉 = − ∂

∂β

(
lnQN (T, V )

)
V,N

(2.8.19)

Recall now that, since −A/T is the Legendre transform of S from E to 1/T , then in thermodynamics we have,

E = −
(
∂(−A/T )

∂(1/T )

)
V,N

= −
(
∂(−βA)

∂β

)
V,N

(2.8.20)

Comparing Eqs. (2.8.19) and (2.8.20) then suggests the identification,

−βA(T, V,N) = lnQN (T, V ) or A(T, V,N) = −kBT lnQN (T, V ) (2.8.21)

We can now make the following identifications:

−A(T, V,N)

T
= kB lnQN (T, V ) QN (T, V ) is the canonical partition function

S(E, V,N) = kB ln Ω(E, V,N) Ω(E, V,N) is the microcanonical partition function

(2.8.22)

and

−A
T

= S − E

T

−A
T

is the Legendre transform of S from E to 1/T

QN =

∫
dE

∆E
Ω(E) e−βE QN is the Laplace transform of Ω from E to β = 1/kBT

(2.8.23)

We thus have that kB times the ln of the partition function gives the corresponding thermodynamic potential (in
the entropy formulation). When two thermodynamic potentials are related by a Legendre transform, then their
corresponding partition functions are related by a Laplace transform. We will see that this is a general rule when we
later consider the grand canonical ensemble, in which the number of particles N fluctuates and the chemical potential
µ is fixed, as well as for a constant pressure ensemble, in which the volume V fluctuates while the pressure p is fixed.


