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Solutions Problem Set 0: The Thermodynamic Limit

For a thermodynamic system with N particles, the thermodynamic limit is the case where one takes N → ∞, so
there are an infinite number of degrees of freedom. Most of what we will do in this course involves systems in the
thermodynamic limit. The discussion presented here illustrates why the thermodynamic limit is so important, and
why it is so fundamental to the subject of thermodynamics.

In our first discussion session we watched simulations of a gas of N = 8 particles and a gas of N = 1024 particles. We
observed that as N increased, the relative fluctuations in the number of particles in any given partition of the system
box decreased. Here we want to give a simple argument to show why that might be. First we will consider the total
energy of the particles in the gas, and then later we will consider the number of particles in the partition.

Let εi = 1
2mv

2
i be the kinetic energy of particle i. We will assume that the probability for this energy to have the

value ε is given by a probability density P(ε).

The average energy 〈ε〉 of a single particle is then,

〈ε〉 =

∫ ∞
0

dεP(ε) ε and similarly 〈f(ε)〉 =

∫ ∞
0

dεP(ε)f(ε) (1)

If we define δε ≡ ε− 〈ε〉, then 〈δε〉 = 0, and the variance of the energy of a single particle is defined as,

σ2
ε ≡ 〈δε2〉 = 〈(ε− 〈ε〉)2〉 = 〈ε2 − 2ε〈ε〉+ 〈ε〉2〉 = 〈ε2〉 − 2〈ε〉〈ε〉+ 〈ε〉2 = 〈ε2〉 − 〈ε〉2 (2)

The square root of the variance is the standard deviation σε. The standard deviation is a measure of the width of the
distribution P(ε) about its average.

The total energy of the gas of N particles is then,

E =

N∑
i=1

εi (3)

We now assume that the particles are all the same, so that we can view the different εi as each being described by
the same probability distribution P(ε); and we will assume that the interactions between the particles is sufficiently
weak that we can regard the energies of the different particles as being uncorrelated. In the language of probability,
we say the εi are independent, identically distributed, random variables.

The average total energy is then,

〈E〉 =

〈
N∑
i=1

εi

〉
=

N∑
i=1

〈εi〉 = N〈ε〉 (4)

and the variance of the total energy is,

σ2
E ≡ 〈(E − 〈E〉)2〉 =

〈[
N∑
i=1

(εi − 〈εi〉)

]2〉
=

〈[
N∑
i=1

δεi

]2〉
=

〈
N∑
i=1

N∑
j=1

δεiδεj

〉
(5)

=

N∑
i=1

N∑
j=1

〈δεiδεj〉 =

N∑
i=1

〈δε2i 〉+
∑
i 6=j

〈δεiδεj〉 =

N∑
i=1

〈δε2i 〉+
∑
i6=j

〈δεi〉〈δεj〉 (6)

where, in the last line, we split the double sum over i and j into the terms where i = j and the terms where i 6= j.
We then used the assumption that δεi is uncorrelated with δεj , and so when i 6= j we have 〈δεiδεj〉 = 〈δεi〉〈δεj〉. This
last result can be shown as follows: for two random variables x and y, with a joint probability distribution P(x, y),
then the variables are statistically independent if the joint probability factors, i.e. P(x, y) = Px(x)Py(y). Then,

〈xy〉 =

∫
dx

∫
dyP(x, y)xy =

∫
dx

∫
dyPx(x)Py(y)xy =

(∫
dxPx(x)x

)(∫
dyPy(y)y

)
= 〈x〉〈y〉 (7)
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Next we use that 〈δεi〉 = 0, and by definition σ2
ε = 〈δε2〉. We therefore get,

σ2
E =

N∑
i=1

〈δε2i 〉 =

N∑
i=1

σ2
ε = Nσ2

ε ⇒ σE =
√
Nσε (8)

So finally we have for the relative fluctuation in the total energy of the gas,

σE
〈E〉

=

√
Nσε
N〈ε〉

=
1√
N

σε
〈ε〉
∼ 1√

N
(9)

Thus the relative fluctuation in the total energy of the gas vanishes as N → ∞. This is called the thermodynamic
limit, where the relative fluctuation away from the average becomes negligible. The key point behind this result is
the assumption that the particles are weakly interacting, and so their energies are uncorrelated.

The Random Walk

You may have recognized that the above arguments are the same as one uses in describing the random walk.

A walker takes a step every after every ∆t time. The distance of the step x is sampled from a probability distribution
P(x). Each step is described by exactly the same P(x), and the distance traveled in any given step is uncorrelated
with the distance traveled in any other step. Let X be the distance traveled after N steps. If xi is the distance
traveled in step i, then

X =

N∑
i=1

xi. (10)

The average distance traveled in any given step is

〈x〉 =

∫ ∞
−∞

dxP(x)x (11)

and the standard deviation σx of the distance in one step is given by,

σ2
x = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 (12)

Then the average distance traveled in N steps is,

〈X〉 = N〈x〉 (13)

and the standard deviation σX of the distance traveled after N steps is given by,

σ2
X = Nσ2

x (14)

If 〈x〉 6= 0 this is called a biased random walk. The walker is more likely to travel in one direction than the other. As
the number N of steps increases, the relative fluctuation in the total distance traveled decreases as,

σX
〈X〉

=
1√
N

σx
〈x〉
∼ 1√

N
(15)

But if 〈x〉 = 0 this is called an unbiased random walk. The walker is just as likely to travel in one direction as in the
reverse direction. After N steps the average distance traveled is 〈X〉 = N〈x〉 = 0. On average, i.e. averaging over
many such random walks, the walker goes nowhere! But in any given random walk, the distance the walker is likely
to be from the origin after N steps is given by the root mean square distance,

σX =
√
〈X2〉 =

√
Nσx (16)

The time after N steps is t = N∆t, and so for an unbiased random walk one has,√
〈X2〉 ∼

√
t (17)

This is the behavior of a diffusing particle.
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Number of Particles in a Partition of the Box

We can now return to the original problem that stimulated this discussion. How many particles of the gas will be
found in a given partition of the system box?

Let us define a variable si for particle i, such that si = 1 if particle i is in the partition, and si = 0 if particle i is not
in the partition. Since s can take only two values, we can write for its probability distribution,

P(s) =

 p for s = 1

1− p for s = 0
(18)

where p is the probability that the particle is in the desired partition. The average of s is then,

〈s〉 =

1∑
s=0

P(s)s = (1)P (1) + (0)P (0) = p (19)

and the standard deviation σs of s is given by,

σ2
s = 〈s2〉 − 〈s〉2 =

1∑
s=0

P(s)s2 − p2 = p− p2 = p(1− p) (20)

For a system with N particles, the total number of particles S that are in the partition of the system box is then,

S =

N∑
i=1

si (21)

We can now write the statistics of S in terms of the average and standard deviation of the single particle variable s. If
we assume that the particles are only weakly interacting, so that we can take the si as independent random variables,
we then have,

〈S〉 = N〈s〉 = Np (22)

and

σ2
S = Nσ2

s = Np(1− p) (23)

So the relative fluctuation of the number of particles in the partition is,

σS
〈S〉

=

√
Np(1− p)
Np

=
1√
N

√
1− p
p

(24)

For the simulation we saw in the discussion session, the box was divided into three equal partitions, so p = 1/3, and,

σS
〈S〉

=
1√
N

√
2/3

1/3
=

√
2

N
(25)

In all these examples, the key assumption that leads to the result, that relative fluctuations decay as 1/
√
N , is that

the degrees of freedom are statistically independent of each other. This will be true when the degrees of freedom are
only very weakly interacting. Later on, in Unit 4 where we discuss phase transitions, we will see that this assumption
is not always true!

The discussions above illustrate several reasons why the thermodynamic limit is important:

1) For a gas of particles we found that σE/〈E〉 ∼ 1/
√
N . In other words, once N is large enough, we can ignore

fluctuations in the total energy of the gas, since the relative fluctuations about the average total energy become



4

negligible. Thus, in providing a thermodynamic description of the gas it is sufficient to consider only the average 〈E〉
and we don’t need to worry about higher moments 〈En〉.

2) For describing the gas it does not matter which of two different physical situations corresponds to the actual
system: (i) We might have that the gas is in total isolation from the rest of the universe, in which case energy E is
conserved and so fixed to a constant value. There are no fluctuations in E at all. This is called the microcanonical
ensemble. In this ensemble the energies εi cannot all truly be independent of one another since their sum

∑
i εi = E

is constrained to be a constant. (ii) Or we might have the case that the box containing the system allows heat to be
transported across its walls, and the system is then in contact with a thermal reservoir (the world outside the box)
that can exchange energy with the system. In this case E is not fixed but can fluctuate. We will see that in this case
the system and reservoir must have the same temperature. This is called the canonical ensemble. Since there is no
constraint that E is fixed, we can now regard the εi as independent when interactions are weak. However, because
in this case σE/〈E〉 ∼ 1/

√
N , these fluctuations in E can be ignored and the system will behave the same as in (i)

where E is fixed. Thus, in the thermodynamic limit, we can do calculations in either the microcanonical or canonical
ensemble, whichever is mathematically easiest, regardless of whether the true physical system is in thermal isolation
from the rest of the world or whether it is contact with a thermal reservoir.

3) Our result also indicates why it is possible to determine the average value of a random variable by taking a large
number of repeated measurements. Suppose we have a random variable x, and we make N independent measurements
of its value. Call these measurements xi. Then the observed average of these N measurements is,

x̄ =
1

N

∑
i

xi (26)

If we write X =
∑
i xi, so that x̄ = X/N , then we can write

〈X〉 =
∑
i

〈xi〉 = N〈x〉 ⇒ 〈x〉 =
〈X〉
N

=

〈
X

N

〉
= 〈x̄〉 (27)

and

σ2
X = Nσ2

x and so σ2
x̄ = 〈x̄2〉 − 〈x̄〉2 =

〈(
X

N

)2
〉
−
〈
X

N

〉2

=
σ2
X

N2
=
Nσ2

x

N2
=
σ2
x

N
(28)

So the relative fluctuation in our measurement x̄ behaves as,

σx̄
〈x̄〉

=
σx√
N

1

〈x〉
=

1√
N

σx
〈x〉
∼ 1√

N
(29)

That is, the more measurements N we make, the closer a particular measurement of x̄ will be to the true 〈x〉.


