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problem 3

Consider taking the Legendre transform of the energy E(S, V,N) with respect to S, V , and N , to get a new thermo-
dynamic potential X(T, p, µ).

What can you say about this new potential X? What does X imply about the variables T , p, and µ? Have you seen
this before?

The naive answer is as follows: To construct X we take the Legendre transform of E from S to T , from V to p, and
from N to µ. This is given by,

X = E � TS + pV � µN (1)

But the Euler relation gives E = TS�pV +µN . Insert this into the above and you get X(T, p, µ) = 0! What does this
mean? It says there is a constraint among the three variables T , p, and µ, such that X(T, p, µ) is always constrained to
be zero. That should remind you of the Gibbs-Duhem relation. And we can then rederive the Gibbs-Duhem relation
as follows.

Since X(T, p, µ) = 0, then it must be that dX = 0 as we vary the variables T , p, and µ. We therefore have,

dX =

✓
@X

@T

◆

p,µ

dT +

✓
@X

@p

◆

T,µ

dp+

✓
@X

@µ

◆

T,p

dµ = 0 (2)

But, by the properties of the Legendre transform, we should have,

✓
@X

@T

◆

p,µ

= �S,

✓
@X

@p

◆

T,µ

= V,

✓
@X

@µ

◆

T,p

= �N (3)

We then conclude from Eq. (2),

dX = �SdT + V dp�Ndµ = 0 which is just the Gibbs-Duhem relation. (4)

But upon further reflection, there are some peculiar things about X(T, p, µ). One can ask, since X = 0, does it really
exist as a function? From Eqs. (1) and the Euler relation, it would appear that X simply vanishes term by term.
Also, since X is a Legendre transform starting from the extensive quantity E, we would expect X to also be extensive.
But X depends only on the intensive variables T , p, and µ, so how can it provide any information about the overall
size of the system as it must if it is extensive?

To address these points, first consider the Legendre transform from E to the Gibbs free energy G. We have for
G(T, p,N),

G = E � TS + pV (5)

From the Euler relation E = TS � pV + µN we then get,

G = µN ) µ =
G

N
= g(T, p) (6)

where g(T, p) is the Gibbs free energy per particle, and it depends only on T and p. It cannot depend on N because
µ and hence G/N is intensive. We thus have G(T, p,N) = Ng(T, p).

Now we can take the Legendre transform from G to X,

X = G� µN (7)

2



2

Now since G = µN , if we substitute that into the above we again get the result that X = 0. But instead we can write
this as,

X(T, p, µ) = Ng(T, p)�Nµ = N [g(T, p)� µ] = 0 (8)

Our expression above, however, still has the variable N . To get rid of N , remember what we are suppose to do. We

define µ(T, p,N) =

✓
@G

@N

◆

T,p

, then try to invert that to get N(T, p, µ) and insert that into

X(T, p, µ) = G(T, p,N(T, p, µ))� µN(T, p, µ) to get X as a function of only T , p, and µ. (9)

But since µ(T, p) =

✓
@G

@N

◆

T,p

= g(T, p) is independent of N , there is no way to invert µ(T, p,N) to get N(T, p, µ),

since µ does not depend on N !

Alternatively, we can define the Legendre transform from G to X as,

X(T, p, µ) = extremum
N

[G(T, p,N)� µN ] = extremum
N

[N(g(T, p)� µ)] (10)

But since the function we take the extremum of, N(g(T, p)�µ), is linear in N , there is no real extremal value (except
N = 0 or N = 1).

So the step of taking the Legendre transform from G to X really fails. This is where we lose the information in
X about the extensivity of the system. The Legendre transform of a function is supposed to contain all the same
information as the original function. That fails here because we are losing the information contained in N about the
extensivity of the system. More generally, Legendre transforms do not work when the function is linear in the variable
one is transforming on.

Nevertheless, it is still perfectly fine to define the quantity X/N , the X per particle!

X

N
= g(T, p)� µ (11)

Now
X

N
(T, p, µ) depends only on T , p, and µ and is intensive like its arguments.

Also,
X

N
(T, p, µ) = 0 is the same as µ = g(T, p) and gives explicitly the constraint among the three variables T , p,

and µ.

We can also write,
✓
@(X/N)

@T

◆

p,µ

=

✓
@g

@T

◆

p

= �s(T, p) and

✓
@(X/N)

@p

◆

T,µ

=

✓
@g

@p

◆

T

= v(T, p) and

✓
@(X/N)

@µ

◆

T,p

= �1 (12)

where s = S/N and v = V/N are the entropy and volume per particle.

Then we can write,

d(X/N) = 0 =

✓
@(X/N)

@T

◆

p,µ

dT +

✓
@(X/N)

@p

◆

T,µ

dp+

✓
@(X/N)

@µ

◆

T,p

dµ ) �sdT + vdp� dµ = 0 (13)

This is just the Gibbs-Duhem relation written in terms of intensive quantities!

The original Gibbs-Duhem relation was �SdT + V dp�Ndµ = 0. Divide each term by N and we get the above.

We could have done the above in a slightly di↵erent way.
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Suppose we first transform E from S to T and from N to µ to get the Grand Potential,

�(T, V, µ) = E � TS � µN (14)

From the Euler relation E = TS � pV + µN we then get,

� = �pV ) p = ��

V
= ��(T, µ) (15)

where �(T, µ) is the Grand Potential per volume. This � depends only on T and µ; it cannot depend on V since p
and hence �/V is intensive. We thus have �(T, V, µ) = V �(T, µ).

We can now take the Legendre transform from � to X,

X = �+ pV = V �(T, µ) + pV = V [�(T, µ) + p] (16)

Now since p = ��/V = ��, we again get X = 0. But as we saw before, we cannot really take the Legendre transform
from � to X because �(T, V, µ) = V �(T, µ) is linear in the transformation variable V .

But we can define X/V , as the X per volume, and then get,

X/V = �(T, µ) + p = 0 (17)

which gives the constraint among the three variables T , p, and µ as p = ��(T, µ).

And we could also write,

d(X/V ) = 0 =

✓
@(X/V )

@T

◆

p,µ

dT +

✓
@(X/V )

@p

◆

T,µ

dp+

✓
@(X/V

@µ

◆

T,p

dµ (18)

=

✓
@�

@T

◆

µ

dT + dp+

✓
@�

@µ

◆

T

dµ (19)

=
1

V

✓
@�

@T

◆

µ,V

dT + dp+
1

V

✓
@�

@µ

◆

T,V

dµ (20)

= � S

V
dT + dp� N

V
dµ (21)

Multiplying each term by V we then get,

�SdT + V dp�Ndµ = 0 (22)

which again is just the Gibbs-Duhem relation!

And, just to be complete, we could also have first transformed E from V to p and from N to µ to get a new potential,

⌅(S, p, µ) = E + pV � µN (23)

By the Euler relation E = TS � pV + µN we then get,

⌅ = TS ) T =
⌅

S
= ⇠(p, µ) (24)

where ⇠(p, µ) is the potential ⌅ per unit entropy! This ⇠ depends only on p and µ; it cannot depend on S since T and
hence ⌅/S must be an intensive quantity. We thus have ⌅(S, p, µ) = S⇠(p, µ).

Now transform from ⌅ to X.

X = ⌅� TS = S⇠(p, µ)� TS = S[⇠(p, µ)� T ] (25)
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Now since ⌅ = TS, we again get X = 0. But, as before, we cannot really take the Legendre transform from ⌅ to X
because ⌅(S, p, µ) = S⇠(p, µ) is linear in the transformation variable S.

But we can define X/S = ⇠(p, µ)� T = 0, which then gives the constraint on T , p, and µ as T = ⇠(p, µ).

And we could then write,

d(X/S) = 0 =

✓
@(X/S)

@T

◆

p,µ

dT +

✓
@(X/S)

@p

◆

T,µ

dp+

✓
@(X/S)

@µ

◆

T,p

dµ (26)

= �dT +

✓
@⇠

@p

◆

µ

dp+

✓
@xi

@µ

◆

p

dµ (27)

= �dT +
1

S

✓
@⌅

@p

◆

µ,S

dp+
1

S

✓
@⌅

@µ

◆

p,S

dµ (28)

= �dT +
V

S
dp� N

S
dµ (29)

Multiply each term by S and we get,

�SdT + V dp�Ndµ = 0 (30)

which again is just the Gibbs-Duhen relation.

To summarize some of the above results, we have,

G(T, p,N) = Ng(T, p), �(T, V, µ) = V �(T, µ), ⌅(S, p, µ) = S⇠(p, µ) (31)

These results lead to some funny conclusions!

Suppose we have a system in contact with a temperature and pressure reservoir, so T , p, and N are fixed. The relevant
potential is G(T, p,N) = Ng(T, p). If we now relaxed the constraint holding the number of particles fixed at N , and
let N vary as it likes (i.e. we now put the system in contact with a particle reservoir), then the new equilibrium state
will be at the value of N that minimizes G = Ng(T, p), i.e. the system goes to N = 0. All the particles in the system
get absorbed by the particle reservoir!

Suppose we have a system in contact with a temperature and particle reservoir, so T , µ and V are fixed. The relevant
potential is �(T, V, µ) = V �(T, µ). If we now relaxed the constraint holding the volume fixed at V , and let V vary
as it likes (i.e. we now put the system in contact with a pressure reservoir), then the new equilibrium state will be
at the value of V that minimizes � = V �(T, µ), i.e. the system goes to V = 0. All the volume of the system gets
absorbed into the pressure reservoir!

Suppose we have a system in contact with a pressure and particle reservoir, so p, µ and S are fixed. The relevant
potential is ⌅(S, p, µ) = S⇠(p, µ). If we now relaxed the constraint holding the entropy fixed at S, and let S vary as it
likes (i.e. we now put the system in contact with a thermal reservoir), then the new equilibrium state will be at the
value of S that minimizes ⌅ = S⇠(p, µ), i.e. the system goes to S = 0. All the entropy of the system gets absorbed
into the thermal reservoir (the system transfers heat to the reservoir until its entropy vanished)!

In each case, as we move to a situation where only the intensive variables of the system are fixed, the system gets
totally absorbed by the reservoir it is in contact with! This is perhaps another way to think about the result that
X(T, p, µ) = 0.

Let us now reexamine this problem from yet another perspective. Suppose our system has some internal degree of
freedom Y that we can control. So now the system is described by E(S, V,N, Y ). We can define the variable ⌘
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conjugate to Y ,

⌘(S, V,N, Y ) =

✓
@E

@Y

◆

S,V,N

(32)

By arguments similar to how we derived the Euler relation, we can now conclude,

E = TS � pV + µN + ⌘Y (33)

We can now transform from S to T , from V to p, and from N to µ, to get

X(T, p, µ, Y ) = E � TS + pV � µN = ⌘Y (34)

where
✓
@X

@T

◆

p,µ,Y

= �S(T, p, µ, Y ),

✓
@X

@p

◆

T,µ,Y

= V (T, p, µ, Y ), (35)

✓
@X

@µ

◆

T,p,Y

= �N(T, p, µ, Y ),

✓
@X

@Y

◆

T,p,µ

= ⌘(T, p, µ, Y ) (36)

Note, this X does not have any of the problems of our previous X when we did not have the variable Y . This
X(T, p, µ, Y ) can be properly extensive since it depends on the extensive variable Y . And this X = ⌘Y 6= 0.

However, we now note that the quantity X/Y = ⌘ is the ratio of two extensive quantities and so ⌘ must be intensive.
Since ⌘ depends only on T , p, µ, and Y , there is no way to make ⌘ intensive unless it does not explicitly depend on
Y . So we must have ⌘(T, p, µ) is independent of Y .

[This is similar to when we have µ(T, p,N) = (@G/@N)T,p. Since µ is intensive, and can depend only on T , p, and
N , then it must be independent of N . This is unlike µ = (@A/@N)T,V . There µ(T, V,N) can depend on V and N
via their ratio V/N = v.]

So the conclusion that ⌘(T, p, µ) depends only on T , p, and µ, and not on Y , gives a constraint on the four intensive
variables T , p, µ and ⌘, i.e. ⌘ is a function of the other three. This will give the analog of the Gibbs-Duhen relation,
but now involving the new variable ⌘.

Now suppose we relax our constraint on the variable Y , and let it be free to adjust itself. The new equilibrium will be
the state in which X(T, p, µ, Y ) = ⌘(T, p, µ)Y is minimized. That will be at Y = 0. When Y = 0, then X = ⌘Y = 0,
and we return to the situation we started with, X = 0.
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