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Unit 3-11: The Ideal Bose Gas and Bose-Einstein Condensation

We now turn to the ideal (non-interacting particles) gas of bosons. The Bose occupation function for the average
number of particles in a state with energy ϵ is,

⟨n(ϵ)⟩ = 1

z−1eβϵ − 1
where z is the fugacity, z = eβµ ≥ 0 (3.11.1)

Here we will consider free non-relativistic bosons in a box with ϵk = ℏ2k2/2m.

Recall, for the average occupation number ⟨n(ϵk)⟩ to remain positive at k = 0 (the single particle ground state), we
need

⟨n(ϵk = 0)⟩ = 1

z−1 − 1
=

z

1− z
≥ 0 ⇒ z ≤ 1 ⇒ µ = kBT ln z ≤ 0. (3.11.2)

The density of particles is given by,

n =
N

V
=

1

V

∑
k

⟨n(ϵk)⟩ =
∫ ∞

0

dϵ g(ϵ) ⟨n(ϵ)⟩ = 2gs√
π λ3

1

kBT

1√
kBT

∫ ∞

0

dϵ

√
ϵ

z−1eβϵ − 1
(3.11.3)

where in the last step we substituted in the form of the density of states g(ϵ) ∼
√
ϵ, as found in Notes 3-8. Here gs

is the spin degeneracy factor, and λ = (h2/2πmkBT )
1/2 is the usual thermal wavelength. For simplicity we will take

gs = 1 for a spinless boson.

Making the substitution of variables y = ϵ/kBT in the above then gives,

n =
2√
π λ3

∫ ∞

0

dy
y1/2

z−1ey − 1
=

1

λ3
g3/2(z) (3.11.4)

where g3/2(z) is the bosonic “standard function” defined in Notes 3-8. There we had,

g3/2(z) =
2√
π

∫ ∞

0

dy
y1/2

z−1ey − 1
= z +

z2

23/2
+

z3

33/2
+ · · · (3.11.5)

Because the signs of all the terms in the series expansion of g3/2(z) are positive, and since 0 ≤ z = eβµ ≤ 1, we have
that g3/2(z) is a monotonic increasing function of z for 0 ≤ z ≤ 1.

As z → 1, g3/2(z) approaches a finite constant,

g3/2(1) = 1 +
1

23/2
+

1

33/2
+ · · · = ζ(3/2) ≃ 2.612 where ζ(x) is the Reimann zeta function. (3.11.6)

To see that g3/2(1) is finite, consider the following.

g3/2(1) =
2√
π

∫ ∞

0

dy
y1/2

ey − 1
as y → ∞, the integral converges since the integrand ∼ y1/2e−y. (3.11.7)

The integrand is largest at small y (recall, small y corresponds to low energy where n(ϵ) is largest). To see the
behavior of the integral as y → 0, we can expand the integrand for small y,

y1/2

ey − 1
≈ y1/2

1 + y − 1
=

1

y1/2
for small y. (3.11.8)

so for the small y part of the integral, say from y = 0 to some y = y∗ ≪ 1, we have,∫ y∗

0

dy
y1/2

ey − 1
≈
∫ y∗

0

dy
1

y1/2
= 2y1/2

∣∣∣y∗

0
= 2y∗1/2 is finite. (3.11.9)
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Therefore the integral for g3/2(1) converges at its lower limit
y → 0, and it converges at its upper limit y → ∞, so g3/2(1)
is finite. Since g3/2(z) is monotonic increasing in z, then
g3/2(z) is finite for all 0 ≤ z ≤ 1.

So we conclude,

n =
N

V
=

g3/2(z)

λ3
≤

g3/2(1)

λ3
=

2.612

λ3
= 2.612

(
2πmkBT

h2

)3/2

(3.11.10)

The goal is then to find the value of z that gives the desired particle density n.

But we now have a contradiction! For a system with a fixed density of bosons n, as T decreases we will eventually
get to a temperature below which the right most side of the above equation is less than n, and so the above equation
must be violated! This happens at a critical temperature Tc where,

n =
N

V
= 2.612

(
2πmkBTc

h2

)3/2

⇒ Tc =
( n

2.612

)2/3 h2

2πmkB
(3.11.11)

Thus, for T = Tc we can satisfy Eq. (3.11.10) by the choice z = 1. For T > Tc we can satisfy Eq. (3.11.10) by choosing
an appropriate value of z < 1. But there is no value of z that can satisfy Eq. (3.11.10) when T < Tc.

The solution to this paradox is as follows.

When doing the sum over k to compute n = N/V we made the approximation

1

V

∑
k

⟨n(ϵk)⟩ → 1

V (∆k)3

∫ ∞

−∞
d3k ⟨n(ϵk)⟩ =

∫ ∞

0

dϵ g(ϵ) ⟨n(ϵ)⟩ (3.11.12)

This approximation is usually exact when V = L3 → ∞ since then ∆k = 2π/L → 0 and the above is just the definition
of an integral. But a problem can arise if ⟨n(ϵk)⟩ becomes singular. And in our case, ⟨n(0)⟩ = ⟨n(ϵk=0)⟩ = z/(1− z)
does become singular as z → 1, which happens as T decreases to Tc.

When we make the above integral approximation to the sum, we are giving a weight g(ϵ) ∼
√
ϵ to the states with

energy ϵ. This gives zero weight to the single particle ground state k = 0 with ϵ = 0. But as T decreases, more and
more bosons will occupy the ground state, as it has the lowest energy. And as T → Tc, and z → 1, the number of
bosons that can be in this ground state, ⟨n(0)⟩ = z/(1 − z), diverges. Replacing the sum by the integral therefore
will not take into account this divergence of ⟨n(0)⟩ as z → 1, since it counts the state k = 0 with zero weight. We
therefore need to explicitly separate the ground state from the rest of the sum, and then we can write,

n =
N

V
=

1

V

∑
k

⟨n(ϵk)⟩ =
⟨n(0)⟩
V

+

∫ ∞

0

dϵ g(ϵ) ⟨n(ϵ)⟩ = 1

V

z

1− z
+

g3/2(z)

λ3
(3.11.13)

For T > Tc, where z < 1, the first term above from the ground state is finite, and will vanish in the thermodynamic
limit V → ∞. We then regain Eq. (3.11.10). However, for T < Tc and finite V , we can avoid our paradox by choosing
z as close to unity as needed, so that the first term in Eq. (3.11.13) becomes as large as needed to give the desired
particle density n. This puts all the “missing” particles in the ground state. As V → ∞, to keep the first term finite,
we need to have z → 1 (since 1/(∞× 0) is indeterminant). Thus we have the following in the thermodynamic limit
V → ∞: For T > Tc, z < 1 is chosen so that n is given by Eq. (3.11.10) and the first term in Eq. (3.11.13), ⟨n(0)⟩/V ,
vanishes. For T < Tc, z = 1 and the density of particles in the ground state ⟨n(0)⟩/V is given by,

⟨n(0⟩)
V

= n−
g3/2(1)

λ3
(3.11.14)

Exactly at T = Tc, z = 1 and ⟨n(0)⟩/V = 0.

Thus, above Tc the density of particles in the ground state ⟨n(0)⟩/V is zero. However, as T decreases below Tc, the
density of particles in the ground state ⟨n(0)⟩/V increases from zero and becomes finite. As T → 0, and λ → ∞, all
the particles go into the ground state and ⟨n(0)⟩/V → n the total density of particles. Tc, given by Eq. (3.11.11), is
the Bose-Einstein condensation temperature. For T < Tc, a finite fraction of the particles are in the ground state.



3

I 111111111111111
E y-2A

Z EL
-

V finite
~m% ¥312

=

=

0 1 The

We can summarize the above by the sketch on the right.
For finite V , it is always possible at any T to find a z < 1
so that the the density n is given by Eq. (3.11.13). But as
V → ∞, the only way to satisfy Eq. (3.11.13) is to have
z = 1 for all T ≤ Tc. Thus, as V → ∞, the fugacity z(T )
has a singular behavior at T = Tc. We will see in Unit 4
that this is a general property of phase transitions. A true
singular behavior at a phase transition exists only in the
thermodynamic limit V → ∞. Note, at large T we approach
the classical limit where, from the discussion in Notes 3-8 following Eq. (3.8.30), we have z = nλ3 ∼ 1/T 3/2.

For V → ∞
z(T ) → 1

µ(T ) → 0

}
as T → Tc,

z(T ) = 1

µ(T ) = 0

}
for T ≤ Tc. (3.11.15)

For T ≤ Tc, we have from Eq. (3.11.14), that the density of particles in the ground state is,

⟨n(0)⟩
V

= n−
g3/2(1)

λ3
= n− 2.612

(
2πmkBT

h2

)3/2

(3.11.16)

Using Tc from Eq. (3.11.11) we then get,

n0 ≡ ⟨n(0)⟩
V

= n

[
1−

(
T

Tc

)3/2
]

(3.11.17)
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For T < Tc, the particles in the ground state are called the
condensate. The density of particles in the ground state n0 =
⟨n(0⟩)/V is called the condensate density. The remaining
particles in excited states, n−n0, is called the normal density.

Close to Tc, with T = Tc − δT and δT ≪ Tc, we have
1− (T/Tc)

3/2 ≈ (3/2)(δT/Tc). So the condensate density n0

vanishes linearly as T → Tc from below.

The state at T > Tc is often called the normal state, since
here the normal density is equal to total particle density. The state at T = 0 is when the condensate density equals
the total particle density. The state at 0 < T < Tc is often called the mixed state, since here we have both condensate
and normal particles.

Pressure

We now consider what effect Bose-Einstein condensation might have on the pressure of the ideal Bose gas.

For the pressure we have,

p

kBT
=

1

V
lnL = − 1

V

∑
k

ln
[
1− ze−βϵk

]
(3.11.18)

So like we did with the density N/V , we will first split off the ground state contribution, and then approximate the
remaining terms in the sum with an integral,

p

kBT
= − 1

V
ln(1− z)−

∫ ∞

0

dϵ g(ϵ) ln
[
1− ze−βϵ

]
=

1

V
ln

(
1

1− z

)
+

g5/2(z)

λ3
(3.11.19)
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where g5/2(z) =
1

Γ(5/2)

∫ ∞

0

dy
y3/2

z−1ey − 1
is one of the Bose standard functions, as we discussed in Notes 3-8.

Now, as we discussed above, the number of bosons that occupy the ground state is,

⟨n(0)⟩ = 1

z−1eβϵk=0 − 1
=

1

z−1 − 1
=

z

1− z
⇒ ⟨n(0)⟩+ 1 =

z

1− z
+ 1 =

1

1− z
(3.11.20)

So,

p

kBT
=

1

V
ln
(
⟨n(0)⟩+ 1

)
+

g5/2(z)

λ3
(3.11.21)

In the thermodynamic limit V → ∞, the first term vanishes, since ⟨n(0)⟩ ≤ N = nV and lim
V→∞

[
1

V
ln(nV + 1)

]
= 0,

since lnV grows less rapidly than does V .

So the condensate does not contribute anything to the pressure!

We have,

p

kBT
=

g5/2(z)

λ3
= g5/2(z)

(
2πmkBT

h2

)3/2

⇒ p = g5/2(z(T ))

(
2πm

h2

)3/2

(kBT )
5/2 (3.11.22)

Recall, for a system of fixed density n, z(T ) must be chosen to be a function of T that gives the desired density n.

In the thermodynamic limit of V → ∞, we have z = 1 for all T ≤ Tc(n), and g5/2(z = 1) = ζ(5/2) = 1.342 is finite.

Therefore, for T ≤ Tc(n) (the critical temperature depends on the system’s fixed density), we have,

p = g5/2(1)

(
2πm

h2

)3/2

(kBT )
5/2 = 1.342

(
2πm

h2

)3/2

(kBT )
5/2 (3.11.23)

For T ≤ Tc, the pressure p ∝ T 5/2 is independent of the system density!

TTc(n1) Tc(n2)

p
n2

n1

n1 < n2

~T 5/2

0

On the right we sketch curves of p vs T at constant density n
(isochores). The isochores for different n are the same ∼ T 5/2 curve
provided T < Tc(n), since in the mixed state p is independent of
n. From Eq. (3.11.11) we have Tc(n) ∼ n2/3. As T increases above
Tc(n) the isochores depart from the common ∼ T 5/2 curve, and at
large T approaching the classical limit, p = nkBT .

We can define nc(T ) as the inverse of Tc(n). From Eq. (3.11.11)
we have,

nc(T ) = 2.612

(
2πmkBT

h2

)3/2

(3.11.24)

nc(T ) is the critical density at a given T . At fixed T , a system with density n > nc(T ) will be in a Bose condensed
mixed. A system with n < nc(T ) will be in the normal state.

T

p
~T 5/2

0

forbidden region
above line 

mixed state
on this line

normal state
below line n ≤ nc(T)

We can now draw the phase diagram in the p−T plane. The mixed
state for n > nc(T ) is represented by the single line ∝ T 5/2, no
matter what the density n of the system. This is because, at fixed
T , p is independent of n in the mixed state. The normal state is
represented by the region below this line; at fixed T , this is when
n < nc(T ). The region above the line is the “forbidden region.” No
value of T and n will result in a pressure p that lies in this region.
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One can also consider the Bose-Einstein condensation transition
in terms of the variables p and v = V/N = 1/n, the specific vol-
ume. At the transition we have p ∝ [Tc(n)]

5/2 and Tc(n) ∝ n2/3.
Therefore, at the transition, p ∝ (n2/3)5/2 = n5/3 = v−5/3. Curves
of p vs v at different constant T (isotherms) therefore look as in
the sketch on the right. For v < vc(T ), one is in the mixed state
where p is independent of the density n, and hence independent of
v = 1/n; the isotherms in this region are therefore straight hori-
zontal lines. As v increases above vc(T ), the isotherms of p vs v
decrease. At high T , where one approaches the classical limit, one
has p ∼ 1/v (from p = nkBT = kBT/v).

p

v0 vc(T2) vc(T1)

T1

T2 T1 < T2

v-5/3

mixed
v ≤ vc

normal

T

Thermodynamic functions

The above are the main things you should know. But one can continue and ask about the thermodynamic properties
of the ideal Bose gas.

Specific heat at constant volume

In particular we now want to compute the specific heat at constant volume, CV , of the ideal Bose gas, and see how
it behaves at the Bose-Einstein transition Tc. The calculation is a bit tedious.

Earlier in Eq. (3.8.19) we had found
E

V
=

3

2
p. Therefore,

E

N
=

3

2

pV

N
=

3

2
pv =

3

2

kBTv

λ3
g5/2(z) (3.11.25)

Recall, z = 1 in the mixed state T < Tc, while z < 1 in the normal state T > Tc.

In the above equation we should regard E/N as a function of either v or z. That is, we either determine v for a given
z and T , or we determine z for a given v and T (recall, z = eβµ, v = V/N , and N and µ are conjugate variables).

The specific heat per particle, at constant volume, is then,

CV

NkB
=

1

NkB

(
∂E

∂T

)
V,N

=
1

kB

(
∂(E/N)

∂T

)
V,N

=
3

2
v

[
d

dT

(
T

λ3

)
g5/2(z) +

T

λ3

(
∂g5/2(z)

∂z

)
dz

dT

]
(3.11.26)

For T < Tc, z = 1 is constant, so
dz

dT
= 0 and only the first term in Eq. (3.11.26) remains. We have,

T

λ3
∝ T 5/2, so

d

dT

(
T

λ3

)
=

5

2

(
T

λ3

)
1

T
=

5

2

1

λ3
(3.11.27)

and so,

CV

NkB
=

3

2
v

(
5

2

1

λ3

)
g5/2(1) =

15

4
g5/2(1)

v

λ3
=

15

4
g5/2(1)v

(
2πmkBT

h2

)3/2

(3.11.28)

At T = Tc, n =
g3/2(1)

λ3
c

and v =
1

n
, so,

CV (T
−
c )

NkB
=

15

4

g5/2(1)

g3/2(1)
=

15

4

1.341

2.612
= 1.925 (3.11.29)

Note, this value of CV = 1.925NkB is larger than the classical ideal gas value of CV = 1.5NkB .
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So for T < Tc we have,

CV

NkB
= 1.925

(
T

Tc

)3/2

for T < Tc (3.11.30)

For T > Tc, z varies with T and so we need to also evaluate the second term in Eq. (3.11.26).

The first term in Eq. (3.11.26) gives:
15

4
g5/2(z(T ))

v

λ3
where now z < 1 depends on T .

To get the second term: from Pathria and Beale Appendix D Eq. (10), z
d

dz
[gν(z)] = gν−1(z)

⇒
dg5/2

dz

dz

dT
=

g3/2

z

dz

dT
(3.11.31)

To find
1

z

dz

dT
consider our earlier result of Eq. (??) for the density when T > Tc,

n =
g3/2(z)

λ3
determines z(T ) for fixed n (3.11.32)

Therefore, for fixed n we have,

0 =
dn

dT
=

d

dT

(
1

λ3

)
g3/2 +

1

λ3

dg3/2

dz

dz

dT
=

3

2

g3/2

λ3T
+

g1/2

λ3

1

z

dz

dT
(3.11.33)

⇒ 1

z

dz

dT
= −3

2

g3/2

g1/2

1

T
(3.11.34)

Putting that into the second term in Eq. (3.11.26) then gives,

CV

NkB
=

15

4

g5/2(z)

g3/2(z)
− 9

4

g3/2(z)

g1/2(z)
for T > Tc (3.11.35)

where we used, v/λ3 = 1/nλ3 = 1/g3/2(z) from Eq. (3.11.32).

Now note that g1/2(1) =

∞∑
ℓ=1

1

ℓ1/2
→ ∞, so as T → T+

c from above, and so z → 1, we have,

CV (T
+
c )

NkB
=

15

4

g5/2(1)

g3/2(1)
− 9

4

g3/2(1)

∞
=

15

4

1.341

2.612
= 1.925 (3.11.36)

Comparing to Eq. (3.11.29) we therefore see that CV is continuous at Tc.

Finally we want to show that, although CV is continuous at Tc, its derivative
dCV

dT
is discontinuous.

For T < Tc, we have from Eq. (3.11.30) that
CV

NkB
= 1.925

(
T

Tc

)3/2

. So,

d

dT

(
CV

NkB

)
=

3

2
(1.925)

(
T

Tc

)1/2
1

Tc
= 2.89

(
T

Tc

)1/2
1

Tc
(3.11.37)
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So the slope at T = T−
c (just below Tc) is,

d

dT

(
CV

NkB

)
=

2.89

Tc
for T = T−

c (3.11.38)

For T > Tc, we have from Eq. (3.11.35),
CV

NkB
=

15

4

g5/2(z)

g3/2(z)
− 9

4

g3/2(z)

g1/2(z)
. So,

d

dT

(
CV

NkB

)
=

15

4

g3/2
dg5/2

dz

dz

dT
− g5/2

dg3/2

dz

dz

dT
[g3/2(z)]2

 − 9

4

g1/2
dg3/2

dz

dz

dT
− g3/2

dg1/2

dz

dz

dT
[g1/2(z)]2

 (3.11.39)

=
1

z

dz

dT

(
15

4

[
g23/2 − g5/2 g1/2

g23/2

]
− 9

4

[
g21/2 − g3/2 g−1/2

g21/2

])
(3.11.40)

where we used z
d

dz
[gν(z)] = gν−1(z) from Pathria and Beale Appendix D.

Finally, use
1

z

dz

dT
= −3

2

g3/2

g1/2

1

T
as found earlier in Eq. (3.11.34), and we get,

d

dT

(
CV

NkB

)
= − 3

8T

g3/2

g1/2

(
15

[
1−

g5/2 g1/2

g23/2

]
− 9

[
1−

g3/2 g−1/2

g21/2

])
(3.11.41)

Now as T → T+
c from above, and so z → 1, we have that g5/2(1) and g3/2(1) are finite, but g1/2(1) and g−1/2(1) → ∞.

So at T = T+
c we have

d

dT

(
CV (T

+
c )

NkB

)
=

45

8Tc

g5/2(1)

g3/2(1)
− 27

8Tc
g23/2(1)

g−1/2(1)

g31/2(1)
(3.11.42)

Now from Pathria and Beale Appendix D Eq. (8) we have, gν(1) = lim
a→0

Γ(1− ν)

a1−ν
. So,

g−1/2(1)

g31/2(1)
= lim

a→0

Γ(3/2)

a3/2

(
a1/2

Γ(1/2)

)3

=
Γ(3/2)

[Γ(1/2)]3
=

1
2π

1/2

π3/2
=

1

2π
(3.11.43)

since Γ(1/2) =
√
π and Γ(3/2) =

√
π/2. So,

d

dT

(
CV (T

+
c )

NkB

)
=

45

8

1.341

2.612

1

Tc
− 27

8

(2.612)2

2π

1

Tc
=

2.89

Tc
− 3.66

Tc
(3.11.44)

d

dT

(
CV (T

+
c )

NkB

)
=

−0.77

Tc
for T = T+

c (3.11.45)

So comparing to Eq. (3.11.38), we see that the slope of CV at Tc is discontinuous, and that CV has a cusp at Tc.
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Entropy

For a gas with a single species of particles, we had for the Gibbs free energy, G = Nµ. Also, G = E − TS + pV , so
we have,

Nµ = E − TS + pV ⇒ S =
E + pV −Nµ

T
⇒ S

NkB
=

E + pV

NkBT
− µ

kBT
(3.11.46)

Earlier we had E = (3/2)pV ⇒ pV = (2/3)E, so,

S

NkBT
=

5

3

E

N

1

kBT
− µ

kBT
(3.11.47)

Earlier we had in Eq. (3.11.25)
E

N
=

3

2

kBTv

λ3
g5/2(z), and for T > Tc we have n =

1

v
=

g3/2(z)

λ3
. Using µ/kBT = ln z

we then have,

S

NkB
=

5

2

v

λ3
g5/2(z)− ln z =


5

2

g5/2(z)

g3/2(z)
− ln z for T > Tc where z < 1

5

2

v

λ3
g5/2(1), for T < Tc where z = 1

(3.11.48)

Now for T < Tc we had a density of particles n0 = n− g3/2(1)/λ
3 in the condensate, and a density nn ≡ g3/2(1)/λ

3

in the normal state.

For T < Tc,
S

NkB
=

5

2

(nn

n

) g5/2(1)

g3/2(1)
→ 0 as T → 0 (since nn → 0).

We can thus imagine that each “normal” particle (i.e. a particle not in the ground state) caries an entropy
5

2
kB

g5/2(1)

g3/2(1)
.

The entropy per particle at T < Tc is just the above entropy per “normal” particle, times the fraction of normal
particles. This implies that it is only the normal particles that carry the entropy, the condensate has zero entropy.

The entropy difference per particle between the normal state and the condensed state for T < Tc is thus
∆S

N
=

5

2
kB

g5/2(1)

g3/2(1)
.

We therefore have as the latent heat of condensation,

L ≡ T∆S =
5

2
kB

g5/2(1)

g3/2(1)
(3.11.49)

This is the energy released by converting one normal particle into one condensate particle.

The mixed phase is like a coexistence region of a first order phase transition (like water ↔ ice – one needs to remove
energy to turn water into ice). This leads to something known as the “two fluid” model for the mixed phase of the
Bose gas. Enough said.


