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Unit 4-2: The Ising Model - A Qualitative Discussion

For the Ising model with fixed magnetic field h we had the Hamiltonian

H[si;h] = −J
∑
〈ij〉

sisj − h
∑
i

si (4.2.1)

Having defined the Ising model and the constant magnetic field ensemble, we can ask what sort of behavior should
we expect? For a given magnetic field h, what do we expect for the resulting magnetization density m(T, h)?

For h > 0 we expect to have m > 0, as it is energetically favorable for the spins to align parallel to h. For h < 0, we
similarly expect to have m < 0.

In general we expect to have m(T,−h) = −m(T, h), since the Hamiltonian has the symmetry, H[si;h] = H[−si;−h].

What do we expect if h = 0?

As T →∞, the thermal energy will greatly exceed the spin coupling energy J , and so we expect each spin to behave
randomly, pointing equally likely up as down, and so m = 0. But even at finite T we might expect m = 0 because
of symmetry. We have H[si; 0] = H[−si; 0], so a configuration {si} in the partition function sum will enter with the

same weight as the configuration {−si}. Thus we would expect to find 〈si〉 = 0, and so m =
1

N

∑
i

〈si〉 = 0.

But at T = 0, the system has two degenrate ground state: all up or all down spins, with m = ±1. The ground state
breaks the symmetry of the Hamiltonian.

More specifically we can write,

lim
h→0+

[
lim
T→0

m(T, h)
]

= +1 while lim
h→0−

[
lim
T→0

m(T, h)
]

= −1 (4.2.2)

In the above, we first take the limit T → 0 with a finite h applied, and then we take the limit h → 0. The notation
h→ 0+ means we take h→ 0 from the positive side, while h→ 0− means we take h→ 0 from the negative side.

Can one have such a state of broken symmetry at a finite temperature T? That is, can we have at finite T > 0,

lim
h→0+

m(T, h) = m > 0 lim
h→0−

m(T, h) = m < 0 (4.2.3)

For a finite size system, i.e. a system with a finite number of spins N , the answer is no!. For a finite system size, the
energy H[si;h] is always finite. The statistical weight of {si} will always be equal to that of {−si} as we take h→ 0.

However, in the thermodynamic limit, N →∞, the answer can be yes! Consider a configuration in which 1
N

∑
i si is

finite (i.e. a macroscopic fraction of the spins are aligned). Now consider a vanishingly small but finite h. The energy
of such a configuration will grow infinitely large as N → ∞. The statistical weight of such a configuration {si} can
then be infinitely different from that of {−si}, due to the interaction with the vanishingly small but finite h. The
weight of the magnetic field term in the Boltzmann factor is (h) × (

∑
i si). If the second terms diverges, while the

first term vanishes, the resulting product (0)× (∞) becomes ill-defined. In other words,

H[si;h]−H[−si;h] ∝ hN does not necessarily vanish as h→ 0 if N →∞ first! (4.2.4)

Therefore, it remains possible that at finite T we could have,

lim
h→0+

[
lim
N→∞

m(T, h)
]

= m > 0 lim
h→0−

[
lim
N→∞

m(T, h)
]

= m < 0 (4.2.5)

It is crucial to take the limits in the above order, i.e. first take N → ∞, and only then take h → 0. Reversing the
limits (h→ 0 first, and then N →∞) must give m = 0 by the symmetry of H.
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We can now give a more physical reason why we can have m 6= 0 when h → 0 only when N → ∞ and the system is
in the infinite thermodynamic limit.

In principle, when h = 0, the configuration {si} has exactly the same statistical weight as the configuration {−si},
and so these would cancel each other out when computing 〈si〉 in a usual ensemble calculation. However, let’s consider
the physical process by which the system, when originally ordered in the configuration {si}, might later wind up in
the configuration {−si}.

Consider h = 0 at low T , when the configuration is mostly all spins up. We will assume that the dynamics is local –
the probability for any given spin to flip depends on the orientations of its neighbors. In particular, we can imagine
that the probability to flip is proportional to the Boltzmann factor e−β∆E , where ∆E is the change in energy if the
spin flips.

R 

L 

ΔE ~ JRd-1 

Consider a region in which all the spins are oriented up. As a thermal fluctuation,
there is a finite probability that one of these spins will flip down. The probability
for it to do so is ∝ e−β∆E , where the energy cost ∆E can be computed as follows.
Initially the energy of interaction of the spin with its neighbors is Ei = −zJ , where
where z is the number of nearest neighbors; z is called the coordination number of
the lattice. After the spin flips, its energy is Ef = +zJ , because it is now antiparallel
to its neighbors. The change in energy is therefore ∆E = Ef − Ei = 2zJ .

Most likely, that spin will soon flip back up, since that is the energetically favored
position. But there is also a chance that, before that happens, one of the neighbors
of this flipped spin will also flip down. The energy cost for that is as follows.
Initially, the neighbor has energy Ei = −(z − 1)J + J , since it is aligned with all
but one of its neighbors. After it flips, it has energy Ef = (z − 1)J − J , since
now it is anti-aligned with all but one of its neighbors. The change in energy is
∆E = Ef − Ei = 2(z − 1)J − 2J = 2zJ − 4J , which is thus lower than the cost for
the first spin to flip.

In such a manner we can imagine that, as a thermal fluctuation, a small domain of
length R can appear in which all the spins have flipped down. The energy cost of
having this domain would be proportional to the surface area of this domain, since
the surface of the domain is where one finds spins that are anti-aligned. The energy
cost of such a domain is therefore proportional to ∆E ∝ JRd−1, where d is the
dimensionality of the model, so the domain surface area goes as Rd−1.

Now suppose the size of such a spin flipped domain got large enough to comprise
half the size of the system. Consider an up spin at the boundary, just outside this
domain. And consider a down spin at the boundary, just inside this domain. The
energy cost to flip such an up spin to down would be the same as the energy to flip
such a down spin to up. It would therefore be equally likely for this domain to either
grow or to shrink. If it grows and becomes larger than half the size of the system, it
then becomes energetically more favorable for the domain to continue to grow and
fill the entire system, than it is to shrink back down to zero and restore the initial up ordered state. We thus have a
mechanism for transitioning the system from an initial state in which all the spins are up to a final state in which all
the spins are down.

The process, by which an initial configuration with all spins up can flip to a configuration with all spins down, therefore
depends on the probability to create such a spin flipped domain that fills half the system. We call this the critical
domain excitation. Since the size of such a domain is R ∼ L/2, where L is the length of the system, then the energy

cost of such a domain is ∆E ∼ JLd−1, and the probability to form such a domain is ∝ e−βJL
d−1

. When L is large,
this probability is exceedingly small, and it would take a very long time for such a critical domain to appear in the
system. However, as long as L is finite, this probability is finite, and if we are prepared to wait long enough, then in
principle it will happen and the system will flip all its spins. If we average on such exceedingly long time scales, we
then must find that 〈si〉 = 0.
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But if we are in the thermodynamic limit, then L→∞, and the probability to form the critical domain ∝ e−βJL
d−1 →

0. A system in the thermodynamic limit, in a configuration with m > 0, will therefore not necessarily flip its average
magnetization even if we wait forever. So we can then wind up with the situation that 〈si〉 6= 0. The key point is that
we must be in the thermodynamic limit of N →∞, so that L→∞.

Note one point: If our system were one-dimensional, then Ld−1 = 1 stays finite as L→∞, and the energy to create
the critical domain is always finite. We would thus expect, and we will later confirm, that the one-dimensional Ising
model at h = 0 will always have m = 〈si〉 = 0 at any finite T .

Another point: Our above estimate ∆E ∝ JLd−1 was an estimate of the energy of a critical domain. However, at
finite temperature, the probability to form a critical domain should be proportional the the free energy to make the
domain, ∆F = ∆E − T∆S, where ∆S is the entropy associated with fluctuations in the surface of the domain. We
therefore expect ∆F = σ(T )Ld−1, where the temperature dependent surface tension σ(T ) replaces the coupling J .

If such broken symmetry states exist at some finite T , do we expect it to exist at all finite T? or do they disappear
above a well defined Tc? If the latter, then we have a ferromagnetic phase transition. In terms of the above discussion
of the free energy ∆F to create a critical domain, such a transition would be viewed as the temperature at which the
surface tension of a large spin flipped domain vanishes. For such a ferromagnetic phase transition we might expect
behavior as sketched to the right below.
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When h = 0, we have two degenerate states, one with +m0(T ) and the other with
−m0(T ), where m0(T ) is the magnitude of the spontaneous magnetization in the
ordered phase at T < Tc. Above Tc we have m = 0. It could be that m0(T )
drops discontinuously to zero as T increases to Tc (that situation is referred to as a
first order transition). But we will see instead that m0(T ) vanishes continuously as
T → Tc from below. This is know as a continuous phase transition. In either case,
m0(T ) = m(T, h = 0) is singular at T = Tc.

As the system is cooled below Tc at h = 0, the system will pick either the up state
with +m0, or the down state with −m0, to order in. We say that the system orders
into a state of spontaneously broken symmetry, since the choice of either +m0 or
−m0 breaks the symmetry of the Hamiltonian.
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At finite magnetic field h, we expect m(T, h) to behave as in the sketch to the right.
Now m(T, h) is a smooth function of T for any fixed h 6= 0.

Phase Diagram in the h − T plane

The phase diagram for the ferromagnetic phase transition of the Ising model in
the h − T plane is as in the sketch below. At h = 0 there is a first order phase
transition line that extends from T = 0 up to T = Tc. As one crosses this line in
the h − T plane, for example by decreasing h at fixed T , the magnetization has a
discontinuous jump from +m0(T ) to −m0(T ). This first order transition line is also
called the coexistence line because the two phases with +m0 and −m0 can coexist
in equilibrium together on this line.
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The end point of this first order line at Tc is called the critical end point.
As T → Tc from below, the jump in the magnetization upon crossing the
first order line, 2m0(T ), vanishes continuously. The critical end point
is therefore called a continuous phase transition. The magnetization
m(T, h) is continuous if one crosses the h = 0 line anywhere above Tc.
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Phase Diagram in the m − T plane

We can also draw the corresponding phase diagram in the m− T plane, as shown in the sketch below.
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The coexistence line in the h − T plane now becomes the coexistence
curve enclosing the forbidden region – so called because there are no spa-
tially homogeneous equilibrium states with T and m in this region. The
forbidden region is also called the phase separation region – if one cools
the system at fixed m into this region, the system will phase separate
into one domain of up spins with magnetization +m0, and the comple-
mentary domain of down spins with magnetization −m0. The size of
these domains will be such that the average magnetization is equal to
the fixed value m.

There are many similarities between the Ising model phase diagram and
the liquid-gas phase diagram if one makes the analogies h ↔ p (the
pressure), and m↔ ρ (the density).

Absence of Phase Transitions in Finite Sized Systems

We said that to have a state of spontaneous broken symmetry at finite T it is necessary to be in the thermodynamic
limit N → ∞. More generally, a true singular phase transition can only occur in the N → ∞ limit. Previously we
gave a physical argument for this in terms of the critical domain excitation. Now we give a mathematical proof of
this.

Consider the partition function sum,

Z(T, h) =
∑
{si}

e−βH[si;h] (4.2.6)

For a finite sized system (N finite) the number of configurations to sum over is 2N is finite. Z is therefore the sum
of a finite number of analytic functions. By an analytic function we mean in the sense of complex function theory
– the function has a convergent Taylor series expansion at any point, and so is infinitely differentiable and has no
singularities; e−H/kBT is analytic in T and h, except at T = 0.

Since Z is a finite sum of analytic functions, then Z must also analytic in T and h, so Z can have no singularities.
Therefore the free energy has no singularities, and no thermodynamic quantities will have any singularities. Thus
there can be no phase transitions.

In the thermodynamic limit N → ∞, however, Z is the sum of an infinite number of analytic functions. Such an
infinite sum need not be analytic, so this then allows for the possibility of a phase transition.

Having outlined above the behavior we might expect to see in the Ising model, we would now like to compute properties
and see what happens! However an exact solution is not in general possible. Exact solutions have only be found so far
in d = 1 and d = 2 dimensions. For d = 1 we will do the calculation later, and will find that there is no ferromagnetic
phase transition at any finite T . For d = 2 there is the famous solution found by Onsager in 1944. This solution has a
ferromagnetic phase transition. Similarly there is a ferromagnetic phase transition in all d > 2. For d = 3 we have no
exact solution and must rely on accurate numerical results. For d > 4 one can show that mean-field theory describes
the phase transition exactly. In the next section we therefore discuss this mean-field theory solution.


