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Today’s Class
‣ Topics

• Fourier’s Theorem

• Nyquist-Shannon Sampling Theorem

• Nyquist Limit

‣ Reading

• Hopkin Ch. 1

• Berg and Stork Ch. 4
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Guess the Song!
‣ Identify this piece of music…

‣ If you can’t guess (I couldn’t), try to guess what era 
this song comes from

‣ How can you tell?
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10cc: I’m Not in Love (1975)
‣ Here is the first verse of the song…

‣ Growing up, I heard this on AM radio (“oldies”) and FM 
stations with the 60s/70s/80s format
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Fender Rhodes Piano
‣ The synthesized keyboard gives away the era when 

this song was written

‣ It’s called a Rhodes (or Fender Rhodes) piano.  Very 
common in pop music from the 1960s to the 1980s
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 commons.mediawiki.orgvintagevibekeyboards (youtube)

http://commons.mediawiki.org
http://www.apple.com
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Choral Effect
‣ The background chorus (“ahhh…”) was the band members 

singing individual notes, overlaid to create a choral effect

‣ In 1975 they didn’t have computers to help them.  All effects were 
made by physically splicing 16-track tape loops, taking weeks

‣ Click here for an interesting 10-minute doc about it from 2009
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1970s
2000s

https://youtu.be/Qq7oGenbp2I
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Last Week: Waves on a String
‣ Last time, with a bit of work, we derived the wave equation 

for waves on an open string

‣ Describes the motion of an oscillating string as a function of 
time t and position x.  It has two solutions:

‣ These are traveling waves moving to the right and to the left
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d 2y
dt 2 = T

ρ
⋅ d

2y
dx2 = v2 ⋅ d

2y
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ρ
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= Asin 2π
λ
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ρ
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Standing Waves
‣ On a string with both ends fixed, you can set up standing 

waves by driving the string at the correct frequency

‣ The waves are the resonant superposition of traveling waves 
reflecting from the ends of the string with v=√T/⍴
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Node

Antinode
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Harmonics
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L = λ/2 f1 = v / λ = v/2L

L = λ f2 = v/L = 2f1

L = 3λ/2 f3 = 3v/2L = 3f1

L = 2λ f4 = 2v/L = 4f1

L = 5λ/2 f5 = 5v/2L = 5f1

L = 3λ f6 = 3v/L = 6f1
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Harmonics
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‣ You can cause the string 
to vibrate differently to 
change the timbre

‣ If a string is touched at its 
midpoint, it can only 
vibrate at frequencies 
with a node at the 
midpoint

‣ The odd-integer 
harmonics (including the 
fundamental frequency) 
are suppressed
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Music Terminology
‣ Instrumental tones are made up of sine waves

‣ Harmonic: an integer multiple of the fundamental 
frequency of the tone

‣ Partial: any one of the sine waves making up a complex 
tone.  Can be harmonic, but doesn’t have to be

‣ Overtone: any partial in the tone except for the 
fundamental.  Again, doesn’t have to be harmonic

‣ Inharmonicity: deviation of any partial from an ideal 
harmonic.  Many acoustic instruments have inharmonic 
partials.  Do you know which ones?
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Fourier Analysis
‣ Fourier’s Theorem: any reasonably continuous 

periodic function can be decomposed into a sum of 
sinusoids (sine and cosine functions):

‣ The sum can be (but doesn’t have to be) infinite

‣ The series is called a Fourier series
12

f (t) = a0 + an cosnωt + bn sinnωt
n=1

∞

∑
= a0 + a1 cosωt + a2 cos2ωt + ...+ an cosnωt + ...
     + b1 sinωt + b2 sin2ωt + ...+ bn sinnωt + ...
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Fourier Coefficients
‣ The coefficients an and bn determine the shape of 

the final waveform. Musically, they determine the 
harmonic partials contributing to a sound

‣ Mathematical definition of the coefficients:
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an =
2
τ

f (t)cos(nωt)dt
−τ /2

τ /2

∫
bn =

2
τ

f (t)sin(nωt)dt
−τ /2

τ /2

∫
ω = 2π /τ

avg. of f(t) × cosine

avg. of f(t) × sine
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Visualization: Square Wave
‣ A square wave oscillates 

between two constant values

‣ E.g., voltage in a digital circuit

‣ Fourier’s Theorem: the square 
pulse can be built up from a set 
of sinusoidal functions

‣ Not every term contributes 
equally to the sum

‣ I.e., the ak and bk differ to 
produce the final waveform
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Visualization: Sawtooth Wave

‣ The sawtooth waveform represents the function

‣ Also called a “ramp” function, used in synthesizers.  
Adding more terms gives a better approximation
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f (t) = t /π ,     −π ≤ t < π
f (t + 2πn) = f (t),     − ∞ < t < ∞,  n = 0,1,2,3,...
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440 Hz Sine Wave
‣ The 440 Hz sine wave (A4 on the piano) is a pure 

tone

16

http://www.audiocheck.net/audiofrequencysignalgenerator_index.php

http://www.audiocheck.net/audiofrequencysignalgenerator_index.php
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440 Hz Square Wave
‣ The square wave is built from the fundamental plus a 

truncated series of the higher harmonics
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http://www.audiocheck.net/audiofrequencysignalgenerator_index.php

http://www.audiocheck.net/audiofrequencysignalgenerator_index.php
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440 Hz Triangle Wave
‣ The triangle wave is also built from a series of the 

higher harmonics
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http://www.audiocheck.net/audiofrequencysignalgenerator_index.php

http://www.audiocheck.net/audiofrequencysignalgenerator_index.php
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440 Hz Sawtooth
‣ The sawtooth waveform: not a particularly pleasant 

sound…
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http://www.audiocheck.net/audiofrequencysignalgenerator_index.php

http://www.audiocheck.net/audiofrequencysignalgenerator_index.php
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Building Up a Sawtooth
‣ In this 10 s clip we will hear a sawtooth waveform 

being built up from its harmonic partials

‣ Notice how the higher terms make the sawtooth 
sound increasingly shrill (or “bright”)
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Building Up a Sawtooth
‣ In the second clip we hear the sawtooth being built 

up from its highest frequencies first

‣ The sound of the sawtooth is clearly dominated by 
the fundamental frequency
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Partials in Different Waveforms
‣ You observed different waveforms produced by a 

function generator

‣ In the generator the square and triangle waves are 
produced by adding Fourier components

‣ See this document for a description of how it’s 
actually done
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http://www.bkprecision.com/support/downloads/function-and-arbitrary-waveform-generator-guidebook.html#ddsTheoryOfOperation
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Contributing Partials
‣ Question: are all harmonic partials present in every 

waveform?

‣Without performing the Fourier decomposition, 
how can we tell?

‣ Shortcut: use the reflection symmetry of the 
waveform f(t) about the point t = 0

‣Why? Because of the underlying reflection symmetry 
of the partials that make up a wave 
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Even Functions: f(x) = f(-x)
‣ Cosines are symmetric about their midpoint:

‣ Reflecting about the midpoint maps the cosine onto 
itself
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Odd Functions: f(-x) = -f(x)
‣ Sines are anti-symmetric about their midpoint:

‣ Reflecting about the midpoint flips the sin upside 
down
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Exploiting Symmetry
‣ Combining even and odd functions is like combining 

numbers:

• Even x Even = Even

• Odd x Odd = Even

• Odd x Even = Odd

‣ So if we have a waveform f(t) that is odd or even we can 
predict the contributing partials because we know that

• an ~ average of f(t) x cosine

• bn ~ average of f(t) x sine
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Odd/Even Harmonics
‣ In a plucked string, the odd 

harmonics are symmetrical 
about the center (even)

‣ The even harmonics are 
anti-symmetrical (odd)

‣ Symmetric (even) 
waveforms only contain 
odd harmonics

‣ Anti-symmetric (odd) 
waveforms must contain 
even harmonics, but can 
also include odd ones
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From Tipler and Mosca
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Which Partials Contribute?
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Square Wave
‣Which harmonics are present in the square wave?
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f 3f 5f 7f
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Triangle Wave
‣Which harmonics are present in the triangle wave?
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f 3f 5f 7f
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Sawtooth Wave
‣Which harmonics are present in the sawtooth wave?

31

f 3f 5f 7f2f 4f 6f



Waveform Sampling
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Sampling and Digitization
‣When we digitize a waveform we have to take care 

to make sure the sampling rate is sufficiently high

‣ If we don’t use sufficient sampling, high-frequency 
and lower-frequency components can be confused

‣ This is a phenomenon called aliasing
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Sampling Rate and Fidelity
‣ Song from start of the class with 44 kHz sampling

‣ Same song, now with 6 kHz sampling rate.  What is 
the difference (if any)?
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Nyquist Limit
‣ If you sample a waveform with frequency fS, you are 

guaranteed a perfect reconstruction of all components up to 
fS/2

‣ So with 44 kHz sampling, we reconstruct signals up to 22 kHz

‣With 6 kHz sampling, we alias signals >3 kHz

‣What is the typical frequency range of human hearing? Does 
this explain the difference in what you heard?
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Fast Fourier Transform (FFT)
‣ The Adobe Audition program (and it’s freeware version 

Audacity) will perform a Fourier decomposition for you

‣ On the computer we can’t represent continuous 
functions; everything is discrete

‣ The Fourier decomposition is accomplished using an 
algorithm called the Fast Fourier Transform (FFT)

• Works really well if you have N data points, where N 
is some power of 2: N = 2k, k = 0, 1, 2, 3, …

• If N is not a power of two, the algorithm will pad the 
end of the data set with zeros

36

http://www.audacityteam.org/
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Calculating the FFT
‣When you calculate an FFT, you have freedom to 

play with a couple of parameters:

• The number of points in your data sample, N

• The window function used

37

⨉
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Effect of FFT Size
‣ Larger N = better resolution of harmonic peaks
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Uncertainty Principle
‣Why does a longer data set produce a better 

resolution in the frequency domain?

‣ Time-Frequency Uncertainty Principle:

‣ Localizing the waveform in time (small N, and therefore 
small 𝝙t) leads to a big uncertainty in frequency (𝝙f)

‣ Localizing the frequency (small 𝝙f) leads means less 
localization of the waveform in time (large 𝝙t)
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Δt ⋅ Δf ∼1
Localization of measurement in time Localization of measurement in frequency
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Effect of Window Function
‣ Certain windows can give you better frequency 

resolution
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Windowing
‣Why do we use a window function at all?

• Because the Fourier Transform is technically defined for 
periodic functions, which are defined out to t = ±∞

• We don’t have infinitely long time samples, but truncated 
versions of periodic functions

• As a result, the FFT contains artifacts (sidebands) because 
we’ve “chopped off” the ends of the function

• The window function mitigates the sidebands by going 
smoothly to zero in the time domain

• Thus, our function doesn’t drop sharply to zero at the 
start and end of the sample, giving a nicer FFT
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‣ Time and frequency behavior of common windows:

Window Examples

42

Olli Niemitalo, commons.mediawiki.org

http://commons.mediawiki.org
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Summary
‣ The partials present in a complex tone contribute to the timbre of the sound

• Partials can be harmonic (integer multiples of the fundamental frequency) 
or inharmonic 

• The high-frequency components affect the brightness of a sound

• Use the reflection symmetry of the waveform f(t) about t=0 to predict the 
partials which contribute to it

‣ Fourier’s Theorem:

• Any reasonably continuous periodic function can be expressed in terms of 
a sum of sinusoidal functions (Fourier series)

• The spectrograms we have been looking at are a discrete calculation of the 
Fourier components of signals (FFT)

• You can play with the window function and size N of your FFT to improve 
the frequency resolution in your spectrograms
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